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Abstract

A hybrid numerical algorithm combining the Gauss Pseudospectral Method (GPM)

with a Generalized Polynomial Chaos (gPC) method to solve nonlinear stochastic op-

timal control problems with constraint uncertainties is presented. The GPM and gPC

have been shown to be spectrally accurate numerical methods for solving deterministic

optimal control problems and stochastic differential equations, respectively. The gPC

uses collocation nodes to sample the random space, which are then inserted into the

differential equations and solved by applying standard differential equation methods.

The resulting set of deterministic solutions is used to characterize the distribution of

the solution by constructing a polynomial representation of the output as a function of

uncertain parameters. Optimal control problems are especially challenging to solve

since they often include path constraints, bounded controls, boundary conditions,

and require solutions that minimize a cost functional. Adding random parameters

can make these problems even more challenging. The hybrid algorithm presented in

this dissertation is the first time the GPM and gPC algorithms have been combined

to solve optimal control problems with random parameters. Using the GPM in the

gPC construct provides minimum cost deterministic solutions used in stochastic com-

putations that meet path, control, and boundary constraints, thus extending current

gPC methods to be applicable to stochastic optimal control problems. The hybrid

GPM-gPC algorithm was applied to two concept demonstration problems: a nonlin-

ear optimal control problem with multiplicative uncertain elements and a trajectory

optimization problem simulating an aircraft flying through a threat field where exact

locations of the threats are unknown. The results show that the expected value, vari-

ance, and covariance statistics of the polynomial output function approximations of
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the state, control, cost, and terminal time variables agree with Monte-Carlo simula-

tion results while requiring on the order of
(

1
40

)th
to
(

1
100

)th
the number of collocation

points and computation time. It was shown that the hybrid algorithm demonstrated

an ability to effectively characterize how the solutions to optimization problems vary

with uncertainty, and has the potential with continued development and availability

of more powerful computer workstations, to be a powerful tool applicable to more

complex control problems of interest to the Department of Defense.
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HYBRID SOLUTION OF STOCHASTIC OPTIMAL CONTROL PROBLEMS

USING GAUSS PSEUDOSPECTRAL METHOD AND GENERALIZED

POLYNOMIAL CHAOS ALGORITHMS

I. Introduction

1.1 Introduction

Finding solutions to optimization problems is essential to planning and conduct-

ing military operations. Virtually every application of United States Air Force

(USAF) air- and space-based weapons systems, ranging from Remotely Piloted Air-

craft (RPA), manned fighter, bomber, and transport aircraft, to satellite systems is

planned to maximize desired effects while minimizing costs and risks. Some real-world

examples of Trajectory Optimization (TO) and Optimal Control (OC) problems are:

• Find the optimal orbit and body orientation that allows an RPA to maximize

the time its camera has eyes on target.

• Find the flight path through a threat-rich environment that minimizes a bomber’s

exposure to threats while conducting a bombing run.

• Find the orbit and thrust (throttle) inputs that maximize loiter time of an air

refueling or Intelligence, Surveillance, and Reconnaissance (ISR) platform.

• Find the optimal thrust profile that minimizes fuel expenditure during satellite

orbital transfer.

• Find the best path through and urban environment that takes a vehicle from

one point to another in minimum time while avoiding obstacles.

• Find the route that allows an attack aircraft to strike the maximum number of
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targets in minimum distance traveled (military version of the travelling salesman

problem).

Real-world TO and OC problems like these are typically solved using deterministic

models, which are often simplified representations of a system’s true physics that

neglect several potential sources of uncertainty. Higher-fidelity models may be cost-

prohibitive to develop, not feasible due to unknown physics, or difficult to use in

engineering work. Additionally, virtually all sensors used to measure system states,

for example speed, altitude, latitude, longitude, etc., are corrupted by noise thus

inducing measurement errors that can degrade the validity of TO or OC solutions.

The environment can also introduce randomness through phenomena such as wind

gusts and turbulence. Therefore, all real-world problems have uncertainties that can

make it difficult to find effective solutions and cause deterministic methods to fail to

meet objectives.

Nonlinear optimization problems are typically too complex to use analytical solu-

tion techniques necessitating use of numerical methods. When stochastic elements are

included, numerical methods become essentially the only way to solve these problems.

Recently, stochastic nonlinear problems have become an area of research emphasis in

the Air Force Research Laboratory (AFRL) both in terms of basic research and ap-

plied research to address Micro Air Vehicle (MAV) control challenges. In a briefing

given at the 2008 International Symposium on Unmanned Aerial Vehicles, AFRL

described its MAV research program [2] highlighting several “fundamental scientific

challenges,” including “unsteady aerodynamics at low Reynolds number[s]” and listed

several engineering and design challenges including:

• Determine what aerodynamic models should be developed/used for inner-loop

flight control

• Gust tolerance for MAV operations near walls and other obstacles
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• Stabilization of low inertial flight vehicles [small, lightweight] in high distur-

bance, gusty environments

• Nonlinear responses

AFRL’s briefing indicates that MAVs are nonlinear systems subject to random (stochas-

tic) elements such as gusts and model uncertainties that are excellent candidates for

future application of the stochastic optimal control method described in this disser-

tation. A 2009 Air Force Office of Scientific Research (AFOSR) briefing describes

its dynamics and control research portfolio where the recurring theme is to investi-

gate numerical methods to solve nonlinear stochastic optimal control problems [64].

Combined, these presentations emphasize that numerical tools are necessary to solve

stochastic nonlinear optimization problems to support MAV control development and

solve other real-world problems.

Two pseudospectral numerical methods, the Gauss Pseudospectral Method (GPM)

and Generalized Polynomial Chaos (gPC), may both be useful in addressing stochas-

tic optimization problems like those of interest to AFOSR and AFRL. The GPM is

a powerful deterministic numerical method for solving both linear and nonlinear TO

and OC problems. It is a direct solution method that uses pseudospectral discretiza-

tion and Gaussian quadrature to recast the continuous-time problem into a nonlinear

programming (NLP) problem that can be solved using existing NLP solvers. The

gPC, sometimes referred to as a deterministic sampling method, is an equally power-

ful method for solving stochastic differential equations (SDE) where collocation points

in the random domain are used as inputs to stochastic differential equations result-

ing in a set of deterministic problems that can be solved using existing differential

equation solvers. The set of sampled deterministic solutions are then used in the gPC

expansion to quantify the effects of the uncertain parameters on the solution.
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1.2 Research Objective and Technical Contribution

The objective of this research is to develop a new method of analyzing the effects

of uncertain parameters on optimal control and trajectory optimization problem so-

lutions and apply it to two representative optimization problems to demonstrate its

ability to quantify the effects of uncertainty on the solution. The approach used in

this research is the first time the GPM and the collocation form of the gPC have

been combined to form a hybrid algorithm. Using the GPM in the hybrid scheme

provides spectrally accurate minimum cost solutions to the sampled deterministic

problems that meet specified constraints. This combination of deterministic and

stochastic pseudospectral methods provides a new numerical algorithm for address-

ing nonlinear optimization problems where model, measurement, and environmental

disturbance uncertainties may be included in the formulation, and their effects as-

sessed by constructing distribution functions showing dependence of the solutions

on uncertain parameters. Thus, the main technical contribution of this research is

to extend current gPC methods to be applicable to stochastic optimal control and

trajectory optimization problems.

1.3 Concept Demonstration Problem Descriptions

The hybrid numerical algorithm combining the GPM and gPC methods presented

in this document is applied to two types of optimization problems to demonstrate its

potential to quantify the effects of uncertainty on TO and OC problem solutions.

The first is a general OC problem taken from a textbook and modified by adding

Gaussian random parameters effecting the state variables. The problem has nonlinear

dynamics, quadratic Lagrange performance index, fixed final state and time, and

no path or control constraints. The objective of this problem is to investigate the

feasibility of using the hybrid algorithm to solve optimization problems by applying
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it to a very challenging nonlinear problem where uncertainties have significant effects

on the solution.

The second problem, and really the main focus of this research, is based on a

more operationally representative mission planning scenario that is of interest to

United States Strategic Command (USSTRATCOM). The problem was formulated

in response to USSTRATCOM’s interest in using solutions calculated by the method

presented in this work to initialize their mission planning software, with hopes of

generating mission plans more efficiently. The sample problem is a trajectory opti-

mization problem where the objectives are to find the path through a two-dimensional

space that minimizes the probability a vehicle will be killed by lethal threats whose

locations are uncertain, and then to quantify the effects those uncertainties have on

the solution by estimating the statistical properties. A generic two-dimensional Du-

bins model consisting of three states and one bounded control is used in formulating

the sample problem. The Dubins model was chosen in lieu of a specific aircraft model

to focus on algorithm development while avoiding additional complexities of develop-

ing and implementing a dynamics model for a particular vehicle. Bi-variate Gaussian

probability density functions are used to model lethality distributions of the threats

in the space, i.e. threat rings, and construct the nonlinear cost functional to be mini-

mized in seeking solutions to the trajectory optimization problem. Random variables

(RV) are incorporated into the cost functional to represent uncertainties in the exact

center locations of the threat rings, making the cost functional and associated state

and control solutions themselves RVs whose distribution properties are estimated by

the gPC expansion coefficients.

In both concept demonstration problems, applying the hybrid algorithm results in

quantification of the effects of the random parameters on the solution by generating a

polynomial distribution function of the random inputs whose coefficients are used to
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calculate expected value, variance, and covariance properties. An additional benefit is

that if uncertain variables become certain, the distribution function can be evaluated

at those points to provide specific optimal solutions.

1.4 Document Organization

This document is organized to present work related to solving optimal control

problems, discuss application of the algorithm to two concept demonstration prob-

lems, and to recommend future research activities. Chapter II presents work found in

the literature related to solving optimal control problems and stochastic differential

equations. It begins with a brief history of the development of optimal control the-

ory, defines an optimal control problem and describes the analytical solution approach

based on calculus of variations theory, and discusses numerical methods available to

solve optimal control problems, including a detailed description of the Gauss Pseu-

dospectral Method. Readers who are familiar with optimal control theory may wish

to skip directly to the Gauss Pseudospectral Method discussion in section 2.3.3.2.

The chapter ends with a summary of methods used to solve stochastic differential

equations and a detailed description of the Generalized Polynomial Chaos method.

Chapter III gives a brief presentation of the hybrid algorithm combining the GPM

and gPC method as it is applied to the demonstration problems in later chapters.

The algorithm is presented as a step-by-step process and a code map of the Mat-

lab!implementation is included. Formulations and results of applying the hybrid

algorithm to the concept demonstration problems are presented in Chapters IV and

V, respectively. The document concludes with recommendations for further research

in Chapter VI.
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II. Related Concepts

The objective of OC theory is “to determine the control signals that will cause

a process to satisfy the physical constraints and at the same time minimize

(or maximize) some performance criterion” [54]. The performance criterion is defined

by an integral performance index, also referred to as a cost functional, that is to be

minimized and the physical constraints are the system or process dynamics to be

controlled. The idea is to cause the system to follow some ideal, or optimal, state

trajectory by solving for the input, or control, that causes the system to follow the

trajectory that minimizes the performance index. The performance index can be cho-

sen to solve a variety of problems such as minimum time, minimum fuel consumption,

minimum energy expended or control effort used, minimum error between desired and

achieved end state (terminal control), minimum error between desired and achieved

path (trajectory following), and so on. This chapter focuses on the body of work

related to solving OC problems. The chapter begins with a brief historical summary

of the development of OC theory. It continues by defining an OC problem and the

classical analytical method of solving the problem stemming from the historical devel-

opment. The chapter continues with a summary of numerical techniques used to solve

OC problems, culminating with a description of a powerful numerical technique, the

Pseudospectral Method (PSM) for approximating the solution. Next, related work

is presented on solving SDEs along with current research applications. The chapter

concludes by linking the theory of OC and the methods of solving SDEs that appear

applicable to solving stochastic optimal control problems, which will set the stage for

the work to follow in subsequent chapters.
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2.1 A Brief History of Optimal Control Theory

Queen Dido of Carthage is generally thought of as to have solved one of the first

optimization problems. Legend has it that she was promised the amount of land

that could be enclosed using a bull’s hide. Her solution was to cut the hide into

thin strings and tie them together to form a circle [54]. To the ancient Greeks, the

circle had to be the best solution because in Aristotle’s thinking it represented the

“perfect figure” [85]. She solved this problem before the mathematical development

of the Calculus of Variations (CV), which proves that the optimal closed curve that

maximizes the area is in fact a circle, and forms the mathematical basis for solving

OC problems.

The first OC problem was posed by Johann Bernoulli (1667-1748) in 1696 when he

issued a challenge to his contemporaries to solve the brachystochrone (from two Greek

words meaning “shortest” and “time”) problem [85]. Bernoulli’s brachystochrone

problem was really a re-statement of the problem posed by Galileo Galilei (1564-

1642) in 1638 whose thoughts on the solution later proved to be incorrect [16, 85].

The goal of the brachystochrone problem was to “find the shape of a wire such that a

bead sliding along it traverses the distance between the two end points in minimum

time” [16]. Bernoulli noted in his challenge that the shortest distance between the

end points would be a straight line, but the minimum time to travel from one end

of the wire to the other would not be achieved by following the straight line path.

The five mathematicians who solved the problem were Johann Bernoulli himself,

his brother Jakob (1654-1705), Wilhelm Gottfried Leibniz (1646-1716), Marquis de

l’Hôpital (1661-1704) and Isaac Newton (1642-1727). It’s noteworthy to point out

that Jakob Bernoulli’s solution resembled future concepts of CV, Hamilton-Jacobi

theory, and Dynamic Programming (DP) [21,85]. This was among the earliest of OC

problems since it dealt with finding the control input, in this case the shape of the
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curved wire, that controlled the behavior of a dynamical system [85].

Willems notes that things were relatively quiet after the solution of Bernoulli’s

brachystochrone problem until about the 1960’s [85]. The quiet period was probably

due to the fact that a rigorous mathematical structure, known today as CV, needed

to evolve in order to solve OC problems, which was developed in the 18th and 19th

centuries [32].

Leibniz and Newton are said to have co-invented CV. Leibniz was interested in

finding extrema of functions and published a paper titled A new method for the

determination of maxima and minima... in 1684 [55]. Newton solved one of the first

problems using CV when he correctly posed and solved a problem to find the shape of

a projectile moving through air that resulted in minimum drag in 1685, and published

in 1694 [16, 32, 55]. At the time, there was a need for the theory of Calculus to be

extended to address more general problems involving finding paths, curves, or surfaces

that result in stationary values (maxima or minima) of functionals [32,55]. The work

of Leibniz, Newton, and the solutions to Bernoulli’s brachystochrone problem in 1696

can be thought of as the beginnings of CV.

Many early problems were shown to be of similar form, generally defined by the

functional I and boundary conditions given as [79]:

I =
∫ b

a
L(q(t), q̇(t), t)dt

q(a) = qa , q(b) = qb (2.1)

a ≤ t ≤ b

Addressing the problem in (2.1) meant finding a function q(t) that resulted in a

stationary I, indicating either a maximum or minimum, while satisfying the bound-

ary conditions [55]. Leonard Euler (1707-1783) was the first to formally study this
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problem in the late 1720’s and 1730’s and published a book in 1744, referred to as

the “birth year of the theory” of CV, entitled A method for discovering curved lines

that enjoy a maximum or a minimum property, or the solution of the isoperimetric

problem taken in the widest sense [32,55]. An excellent detailed discussion of Euler’s

method can be found in [47]. Euler’s main contribution to the development of CV

theory was derivation of what is known as the Euler equation. Euler found that a

necessary condition for q(t) satisfying (2.1) to be a minimum curve had to also satisfy:

∂L

∂q
− d

dt

[

∂L

∂q̇

]

= 0 (2.2)

Joseph Louis Lagrange (1736-1813) extended Euler’s work by inventing his “method

of variations” and his multiplier rule, published in 1760 in a paper entitled Essay on a

new method for determining maxima and minima for formulas of indefinite integrals.

Using these methods, he studied the first variation, denoted as δI, of the functional

in (2.1). He concluded that the extremal solution q(t) was obtained when the first

variation vanished, analogous to solving for f ′(x) = 0 in the case of finding maxima

or minima of a function using traditional calculus. He showed that when the first

variation vanished, Euler’s equation was left, more convincingly showing that Euler’s

equation was a necessary condition for finding the function q(t) that leads to an ex-

tremal value of I. Subsequently, Euler gave the field the name Calculus of Variations

in honor of Lagrange’s variational method and equation (2.2) became known as the

Euler-Lagrange equation. The significance of Lagrange’s work was to generalize Eu-

ler’s geometric approach to applied problems by focusing on “algorithmic aspects of

analysis” based on differential equations [32, 55].

In calculus, the second derivative test provides a necessary condition for deter-

mining if extremal points are maxima or minima. Likewise, Euler’s equation and

examining the first variation of the functional only provides the necessary condition
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for a maximum or minimum curve. The second variation, δ2I, provides the analogous

test for determining maximum and minimum curves in CV. Adrien-Marie Legendre

(1752-1833) was the first to look at the second variation of the functional and deter-

mined, without complete proof, that Lq̇q̇ ≥ 0 along a minimizing curve and Lq̇q̇ ≤ 0

(subscripts denote partial derivatives) along a maximizing one, as published in 1786.

Karl Gustav Jacob Jacobi (1804-1851) later provided rigorous proof that Lq̇q̇ > 0

along with the Jacobi condition provide sufficiency for showing q(t) is a minimum

curve [16, 32, 55].

Sir William Rowan Hamilton (1805-1865) was the next to add to the theory of

CV. In papers he wrote in 1834 and 1835 he “showed that under certain conditions,

problems in mechanics involving many variables and constraints can be reduced to

an examination of the partial derivatives of a single function” [16, 32]. Hamilton’s

function was:

H =< p, q̇ > −L(q, q̇, t) (2.3)

Where p = Lq̇(q, q̇, t) and the < p, q̇ > term denotes an inner product. Hamilton

found that looking at Hp = q̇ and −Hq = ṗ was equivalent to (2.2) under the

assumptions that q̇ is treated not as an independent variable but as a function of q, p,

and t and that the p equation can be solved for q̇ [79]. Sussmann and Willems noted

that Hamilton should have written his function in another way. Letting u(t) = q̇(t),

defining the Hamiltonian, H, as:

H(q, u, p, t) =< p, u > −L(q, u, t) (2.4)

and p(t) as:

p(t) = Lu(q(t), q̇(t), t) (2.5)
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leads to:

Hp = q̇

−Hq = ṗ (2.6)

Hu = 0

This is a more general result and is directly equivalent to (2.2). This result is referred

to as the “control Hamiltonian” and Sussmann and Willems state, “the control ver-

sion of the Hamiltonian equations is equivalent to the Euler-Lagrange system under

completely general conditions...”. Equation (2.4) will be the basis for finding the

analytical OC solution presented in the next section.

Hamilton’s proof was lacking details that Jacobi added in 1838. Jacobi was doing

similar work at about the same time as Hamilton that showed that “the partial

derivatives of the performance index with respect to each parameter of a family of

extremals (which today we call ‘states’) obeyed a certain differential equation” [16].

Jacobi cleaned up Hamilton’s results and simplified them [16, 32]. We now know

this theory as Hamilton-Jacobi theory, which became the basis of DP developed by

Bellman in the 1950’s.

In the late 19th and the first half of the 20th centuries, mathematicians like Karl

Theodor Wilhelm Weierstrass (1815-1897), Oskar Bolza (1857-1942), and Gilbert

Bliss (1876-1951) added mathematical rigor to the theory of CV. Weierstrass discov-

ered a condition which became the predecessor to maximum principles later stated

by Bellman and Pontryagin and was the first to develop a complete sufficiency theo-

rem for a minimum. Bolza and Bliss built upon Weierstrass’ work at the University

of Chicago giving CV its current rigorous mathematical structure, culminating in

publication of the book Lectures on the Calculus of Variations in 1946 [16, 32].
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The evolved CV theory was the enabling structure for OC theory to progress

beginning in the 1950’s. OC theory is a generalization of CV and allows nonlinear and

non-smooth functionals to be optimized [32]. Bryson gives an outstanding summary

of the roots of OC theory from 1950 to 1985 in [16]. His paper discusses the roots

of OC theory in contexts of classical control, random processes, linear and nonlinear

programming, and DP. The rest of the historical discussion of OC theory in this

section is a summary of Bryson’s main points.

Until the years surrounding World War II (WWII), classical linear control meth-

ods, such as Proportional (P), Proportional + Integral (PI), Proportional + Integral

+ Derivative (PID), Lead, Lag, and Lead-Lag involved a degree of ad-hoc design of

control gains. Control gains were selected and adjusted based on observed perfor-

mance until some acceptable result was achieved, leaving a considerable degree of

subjectiveness to control design. During the WWII period, several methods were

developed to systematically choose control gains including Evans’ Root Locus (RL)

method, the Bode plot method, and the Nyquist plot method. These methods, and

others, allowed designers to select gains based on some desired stability and perfor-

mance criteria. In the 1960’s, Kalman introduced the Linear Quadratic Regulator

(LQR) method using an integral performance index that placed quadratic penalties

on output errors and amount of control used [51, 52]. He used CV to show that the

OC inputs can be found using linear feedback of the state variables and was able to

apply this method to time-varying and Multi-Input Multi-Output (MIMO) systems.

Kalman further showed that the optimal state feedback gain matrix could be found

by solving a backward Riccati equation [16]. His contribution was to replace ad-hoc

gain selection with a method to solve for optimal feedback control gains.

Some would say that OC theory was truly born in the 1950’s and 1960’s with

the publication of The Mathematical Theory of Optimal Processes [69] in 1961 by
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Soviet mathematician Lev Semenovich Pontryagin (1908-1988) and a group of his

students [79]. Pontryagin’s well developed theory forms the basis for modern optimal

control, is applicable to linear and nonlinear problems, and is usually the benchmark

for comparing results produced by numerical methods developed later. His theory

extended CV and Weierstrass’ necessary condition to address inequality constraints

and stated that a minimizing path must satisfy the Euler-Lagrange equations (2.2)

and that the OC solution maximizes the Hamiltonian (2.3) in their bounded region

at each point along the curve [16]. Pontryagin used a different sign convention on

the Hamiltonian, thus the term maximum principle, but the principle is applied to

find minimizing solutions of the Hamiltonian and is thus referred to as Pontryagin’s

Minimum Principle (PMP).

The field of OC is closely tied to the study of optimal signal filtering. Models

representing a system’s dynamics are typically assumed to be noise-free. That is to

say that an assumption is made that the state of the system represented by a set of

differential equations is perfectly known. In practice, models are a simplification of

the true physical nature of the system and measurements of system states are noise-

corrupted. Therefore, some method must be implemented to extract the best possible

estimate of the state with the presence of model and measurement uncertainties.

Pioneers in the study of optimal filtering were Norbert Wiener (1894-1964) in the

1940’s [84] and Ruldolf Kalman and Richard Bucy in the 1950’s and 1960’s [51,

52]. These researchers essentially developed optimal techniques to minimize errors

between the actual measurements and the estimated system states obtained from the

dynamical models. Kalman showed that optimal filter gains are obtained by solving

a forward Riccati equation and became known as the Linear Quadratic Estimator

(LQE) [16]. The LQE combined with the LQR method became known as the Linear

Quadratic Gaussian (LQG) compensator. The LQG compensator, an OC scheme
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that is applicable to linear time-varying systems with uncorrelated Gaussian random

inputs, feeds back optimal state estimates that are then used to solve the OC problem

which minimizes the quadratic performance index [16].

Development of LQR, LQE, LQG, and Wiener filtering methods resulted in sig-

nificant advancements in the OC field. However, these methods are primarily focused

on linear systems. The power of the CV applied to OC problems is that it can be used

to solve nonlinear problems. The difficulty, however, is that applying Euler-Lagrange,

Hamilton-Jacobi, and PMP theories may result in differential equations where an an-

alytical solution may not be discernible. The advent of the digital computer in the

mid-1950’s enabled development of numerical methods to solve these problems.

At this point the historical summary of OC theory will be left, not because there

are not significant contributions, but rather because surveying significant accomplish-

ments is not the main focus of this chapter, and in fact could be the topic of study

in itself taking significant time to study, analyze, and summarize. Suffice it to say

that efforts from the 1950’s to present focus on numerical techniques to solve prob-

lems that were previously intractable, analytically or numerically, with pencil and

paper analysis, and on showing that the numerical techniques produce results that

are complimentary, if not equivalent, to CV-based solutions. Bellman’s principle of

optimality and a sequential decision making method, known as Dynamic Program-

ming, was developed in the 1950’s and is still widely used [16]. Following dynamic

programming, nonlinear programming, based on gradient search methods, was devel-

oped in the 1960’s [16], and spectral methods were developed in the 1970’s and more

prolifically applied to OC problems in the 1980’s and 1990’s [7].

This has been a brief survey of the history of theory related to solving OC prob-

lems. It is by no means exhaustive, and was never intended to be. The intent of this

brief survey was to give a historical context for methods that will be discussed in this
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document for solving OC problems. In the next section, the general OC problem will

be stated and the CV-based formulation of the solution will be presented.

2.2 Optimal Control Problem Defined

In this section the general continuous-time OC problem is stated and the general

procedure for solving the problem is summarized. Many textbooks have been written

on the subject such as [54] and [17] and contain derivation of the Euler-Lagrange

(EL) equations using CV principles. The concepts in this section are summarized

from [54], [75], [7], and [50]. The notation used is a combination of that used in

[54], [72], [7], and [50], attempting to match the most commonly used notation in

current literature. References [54] and [48] also present equivalent development of

discrete-time Euler-Lagrange equations, which will not be summarized here.

2.2.1 Formulation.

The objective of an OC problem is to find an admissible control function u∗(t) that

transfers a system from some initial state x0 at the initial time t0 to some final state

xf at the final time tf following an admissible state trajectory x∗(t) that minimizes

a performance index, J, of the form:

J(x(t),u(t), t) = Φ(x(tf ), tf) +

∫ tf

t0

g(x(t),u(t), t)dt (2.7)

The term admissible is used to indicate that the optimal solutions u∗(t) and x∗(t) lie

within acceptable upper and lower limits. The “∗” superscript notation is commonly

used in many texts to distinguish the solution that minimizes the functional J . The

first term in (2.7), Φ(·), is known as the Mayer term and the integral term,
∫ tf
t0

g(·)dt,

is known as the Lagrange term. The cost functional is said to be in Bolza form when

both terms are present. The state vector, x(·), is in Rn, the control vector, u(·), is in
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Rm. In vector form, x(t) and u(t) can be written as:

x(t) "













x1(t)

...

xn(t)













, u(t) "













u1(t)

...

um(t)













The performance index (2.7) minimization is subject to the dynamical constraints of

the system to be controlled, generally represented as:

ẋ(t) = f(x(t),u(t), t) (2.8)

The boundary conditions, φ(·), in general form can be stated as:

φ(x(t0), t0,x(tf), tf ) = 0 (2.9)

Some of the boundary conditions that may be specified are summarized below.

• Fixed Final Time - The terminal time may be specified with x(tf ) fixed, x(tf )

free, or x(tf ) on a surface m(x(t)) = 0.

• Free Final Time - The terminal time may not be specified with x(tf ) fixed,

x(tf ) free, x(tf ) on a moving point θ(t), x(tf) on a surface m(x(t)) = 0, or

x(tf ) on a moving surface m(x(t), t) = 0.

Constraints may also be placed on the path the admissible solution can take, C(·),

including boundaries on admissible x(t) trajectories, generally represented by the

inequality constraints:

C(x(t),u(t), t) ≤ 0 (2.10)
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If the set of admissible controls is limited to some bounded region U , written as,

u(t) ∈ U , then the inequality constraints placed on the control can be written as:

ui,min ≤ ui(t) ≤ ui,max (2.11)

where i = 1, ..., m. The functional mappings of Φ(·), g(·), f(·), φ(·), and C(·) in

equations (2.7) - (2.10) are given by:

Φ(x(tf ), tf) : Rn × R → R

g(x(t),u(t), t) : Rn × Rm × R → R

f(x(t),u(t), t) : Rn × Rm × R → Rn

φ(x(t0), t0,x(tf), tf) : Rn × R× Rn × R → Rq

C(x(t),u(t), t) : Rn × Rm × R → Rc

(2.12)

A brief development of the solution method based on CV techniques is presented

next. Equations to apply boundary conditions will be presented for three of the cases

listed above; tf specified (fixed) with x(tf ) unspecified (free), tf free with x(tf ) fixed,

and both tf and x(tf) fixed. Equations needed to apply other types of boundary

conditions can be found in [54].

2.2.2 Classical Analytical Solution.

With the general OC problem defined in the previous section, a general solu-

tion procedure based on CV can be obtained. The development that follows is a

combination of information found in [7, 50, 54, 72]. The necessary conditions for a

minimizing solution are obtained by looking at the first variation of the functional in

(2.7) augmented by the differential equality constraints (system dynamics), inequal-

ity path constraints (C(·)), and boundary conditions (φ(·)), denoted as Ja. Lagrange

multipliers ν ∈ Rq, λ(t) ∈ Rn, referred to as the costate vector, and µ(t) ∈ Rc are
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introduced to augment the cost functional with the boundary conditions, dynamics,

and path constraints respectively. The augmented cost functional is given as:

Ja = Φ(x(tf ), tf)− νTφ(x(t0), t0,x(tf), tf )

+

∫ tf

t0

{g(x(t),u(t), t)− λT (t) [ẋ(t)− f(x(t),u(t), t)] (2.13)

−µTC(x(t),u(t), t)}dt

Taking the first variation of Ja, represented as δJa, following procedures similar to

those found in [7, 50, 54] gives:

δJa = [Φx(tf )− νTφx(tf)]δxf − [νTφx(t0)]δx0 − δνTφ+ [Φt(tf )

−νTφt(tf ) + g(tf)− λT (tf )(ẋ(tf)− f(tf ))− µT (tf )C(tf)]δtf

+[−νTφt(t0)− g(t0) + λT (t0)(ẋ(t0)− f(t0) + µT (t0)C(t0)]δt0 (2.14)

+
∫ tf
t0
{(gx + λT fx − µTCx)δx+ (gu + λT fu − µTCu)δu

−δλT (ẋ− f)− δµTC− λT δẋ}dt

Notice that the arguments of the functions in (2.14) were left out for readability. It’s

clear from (2.13) what the functional dependencies are. Next, define the Hamiltonian

functional:

H(x(t),u(t),λ(t),µ(t), t) = g(x(t),u(t), t) + λT (t)f(x(t),u(t), t) (2.15)

−µT (t)C(x(t),u(t), t)
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Substituting (2.15) along with the partial derivatives Hx, Hλ, and Hu into (2.14),

using the following integration by parts formula on the δẋ term:

∫ tf

t0

−λT δẋ dt = −λT (tf )δx(tf) + λT (t0)δx(t0) +

∫ tf

t0

λ̇
T
δx dt (2.16)

incorporating the following identities for δxf and δxf :

δxf = δx(tf) + ẋ(tf)δtf (2.17)

δx0 = δx(t0) + ẋ(t0)δt0

and simplifying yields:

δJa = [Φx(tf)− νTφx(tf )− λT (tf )]δxf + [−νTφx(t0) + λT (t0)]δx0

−δνTφ+ {H(tf )− Φt(tf)− νTφt(tf)}δtf + {−H(t0)− νTφt(t0)} (2.18)

δt0 +
∫ tf
t0
{[Hx + λ̇

T
]δx+Huδu+ (f − ẋ)δλT −CδµT}dt

The EL equations needed to solve for the OC and the associated optimal state

trajectory come from the integrand of (2.18). The variational terms inside the inte-

grand are arbitrary, thus the necessary conditions for a minimum are found by finding

the coefficients that cause the variations δx, δu, and δλ to vanish. Therefore, the

necessary conditions that must be satisfied for a minimizing solution, regardless of

the boundary conditions, are:

• State equations: The δλ term becomes zero if (f − ẋ) = 0. Therefore, the

state equations are found by taking the partial derivative Hλ of the Hamilto-

nian. This may seem a little redundant since the state equations are given as

differential equality constraints in (2.8), but confirms that the Hamiltonian has

been constructed correctly and that the minimization depends on the system
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dynamics.

• Costate equations: The δx term becomes zero if (Hx + λ̇
T
) = 0. This

condition defines a set of differential equations for the costates by taking the

negative of the partial derivative Hx of the Hamiltonian.

• Control equations: The δu term becomes zero if the partial derivative Hu is

zero. This generally produces an OC solution that is a function of the costates

and possibly the states. This condition is true for an unbounded control. Pon-

tryagin’s Minimum Principle (PMP) will be discussed below to account for

bounded controls.

The variational terms in (2.18) that are not inside the integral operator define

how boundary conditions are applied. Generally speaking, if a boundary condition is

specified, either initial, final, or both, then the variation related to that quantity is

zero and the term drops out of equation (2.18). For example, if the initial time and

initial state are given, then δt0 and δx0 are 0. If a quantity is unspecified, or free,

then the variation on that quantity is arbitrary and the minimizing solution must

drive the coefficient on that term to zero. For example, if the final state is free, then

δxf is arbitrary, thus [Φx(tf)− νTφx(tf )−λT (tf )] must be 0. This reasoning allows

for the definition of three common boundary conditions: fixed final time and free final

state, fixed final state and free final time, and fixed final state and fixed final time as

follows.

• Fixed final time with free final state: In this case, the coefficient on the

δxf term must be zero. Therefore:

λT (tf ) = Φx(tf )− νTφx(tf) (2.19)

• Fixed final state with free final time: In this case, the coefficient on the
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δtf term must be zero, leading to:

Φt(tf )− νTφt(tf ) + g(tf)− µT (tf )C(tf) + λT (tf)f(tf ) = 0 (2.20)

Φt(tf )− νTφt(tf ) +H(tf) = 0

• Fixed final state with fixed final time: This is the simplest case where

x(t0) = x0 and x(tf ) = xf provides the necessary information to determine

the solution by treating the system of equations as a Boundary Value Problem

(BVP).

Other boundary conditions may be specified as previously mentioned. A table of the

relevant boundary condition equations is found in [54].

Looking at the first variation of Ja has revealed a procedure for finding necessary

conditions for a minimum solution. The variational method effectively translates to

finding the u∗(t) and the associated x∗(t) that minimizes the cost functional of (2.7)

to finding the u∗(t) and the associated x∗(t) that minimizes the Hamiltonian in (2.15).

The process can be stated as:

1. Build the Hamiltonian using (2.15)

2. Write the state equations as:

ẋ∗ =
∂H
∂λ

(x∗(t),u∗(t),λ∗(t),µ∗(t), t) (2.21)

3. Define the costate equations as:

λ̇
∗
= −∂H

∂x
(x∗(t),u∗(t),λ∗(t),µ∗(t), t) (2.22)
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4. Express the control equations as:

0 =
∂H
∂u

(x∗(t),u∗(t),λ∗(t),µ∗(t), t) (2.23)

5. Simultaneously solve the system of Euler-Lagrange equations (2.21), (2.22), and

(2.23) and apply the appropriate boundary condition equations from [54]. The

boundary condition equations determine the terminal time and state, resulting

in what is commonly referred to as the Hamiltonian Boundary Value Problem

(HBVP). Note that (2.23) defines u∗(t) as a function λ∗(t), µ∗(t), and x∗(t)

which may be substituted into (2.21) and (2.22) to remove explicit functionality

of u∗(t) if u∗(t) can be isolated.

The u∗(t) determined by (2.23) is a necessary condition for an optimum solution

in the case where there are no bounds on the control or where the resultant u∗(t)

never breaks the upper or lower limits on u(t). The necessary and sufficient conditions

for H(x∗(t),u∗(t),λ∗(t),µ∗(t), t) to be a global minimum are that equations (2.21),

(2.22), and (2.23) be satisfied (necessary) and that them × m matrixHuu be positive

definite (sufficient) [75]. In order to pick an admissible u∗(t), it’s necessary to consider

how to account for the bounded control in (2.11) using PMP. The necessary condition

provided by PMP states that for all admissible controls u(t) ∈ U :

H(x∗(t),u∗(t),λ∗(t),µ∗(t), t) ≤ H(x∗(t),u(t),λ∗(t),µ∗(t), t) (2.24)

This equation says that if there is an admissible OC signal u∗(t) then there exists an

optimal costate vector λ∗(t) and vector of Lagrange multipliers µ∗(t) multiplying the

path constraints that satisfies (2.22) and (2.10) at every point in the time interval
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t ∈ [t0, tf ] such that (2.24) is true [75]. That is to say that:

min
u∈U

H(x∗(t),u(t),λ∗(t),µ∗(t), t) = H(x∗(t),u∗(t),λ∗(t),µ∗(t), t) (2.25)

The OC is the one out of the entire set of admissible controls that causes H to be

its global minimum. In practice, applying the PMP involves solving for x∗(t), λ∗(t),

and u∗(t) using equations (2.21) - (2.23), initially assuming unbounded controls, and

then comparing the resultant u∗ with the admissible region to see if there are areas

where u∗ is out of bounds. If so, then the control signal is re-evaluated using (2.25)

until the minimum H is found that satisfies the given boundary conditions [54].

An alternate method of taking into account boundaries on the state trajectory is

presented in [54], which may eliminate (2.10) from the problem (if C(·) only consists

of bounds on the states) without adding significant complexity. Kirk presents a pro-

cedure for transforming the c inequality constraints into a single equality constraint.

The net effect is that there are two additional equations, one for ẋn+1 and one for

λ̇n+1. Therefore, there are n + 1 equations in (2.21) and in (2.22) to solve. The

procedure stays virtually the same as indicated above, but eliminates the Lagrange

multipliers µ, and does not affect applying the PMP for determining the admissible

control vector.

In general, analytically solving the system of differential equations (2.21) and

(2.22) with substitutions made using (2.23) is only possible for very simple problems.

These equations are typically coupled nonlinear systems where standard integral ta-

bles may not offer closed-form solutions and linear methods such as Laplace trans-

forms are not helpful. Therefore, numerical methods are necessary to find the solution

to most meaningful OC problems.
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2.2.3 Formulation and Classical Solution Summary.

In this section, the OC problem was defined and the Calculus of Variations and

Pontryagin’s Minimum Principle were used to derive the Hamiltonian Boundary Value

Problem, which defines the first-order necessary conditions for optimality. Solving

the resulting set of differential equations indirectly solves the original OC problem by

finding the solution that minimizes the Hamiltonian, which turns out to also be the

minimizing solution to the original cost functional. Solving the differential equations

of the HBVP analytically can be difficult, if not impossible, requiring numerical tech-

niques to solve the problem. A survey of numerical techniques for solving the OC

problem are described in the next section.

2.3 Numerical Methods for Optimal Control

There are two main categories of numerical approaches for solving the OC prob-

lem defined by (2.7) - (2.11): indirect methods and direct methods. Indirect meth-

ods are based on numerically solving the system of Ordinary Differential Equations

(ODEs), known as the Hamiltonian Boundary Value Problem, derived by the CV

approach described in section 2.2.2 by equations (2.21) - (2.25). Direct methods, on

the other hand, translate the continuous-time OC problem into a nonlinear optimiza-

tion problem, also called a Nonlinear Programming (NLP) problem, where gradient

search methods are applied to determine the optimal state trajectories and control

sequences by satisfying Karush-Kuhn-Tucker (KKT) optimality conditions [71]. This

section will briefly describe typical methods used in both categories and then discuss

PSMs used for solving OC problems.
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2.3.1 Indirect Methods.

Indirect methods are based on solving the HBVP given in equations (2.21) -

(2.23) subject to the given boundary conditions. The benefit of using the CV-based

indirect approach is that it yields highly accurate results while providing assurances

that the first-order optimality conditions are satisfied [50]. However, difficulties arise

in that explicit derivations of the costate (2.22) and control (2.23) equations are

required, which can be very difficult depending on the OC problem being considered,

and prior knowledge of the activeness of inequality constraints (2.10) is necessary

[78]. Numerical techniques applied to the indirect equations generally require good

initial guesses of the costates, which is often difficult since the costates generally

do not have direct physical interpretations [7, 50]. There are two main approaches

to solving the problem: shooting and collocation methods. Shooting methods are

iterative techniques that enable solution of the BVP using Initial Value Problem

(IVP) techniques while collocation methods allow simultaneous solution of unknown

parameters [71]. Consider the general problem of finding the solution x(t), where

t ∈ [t0, tf ], to an IVP of the form:

d

dt
x(t) = f(x(t), t) (2.26)

x(t0) = x0

Equation (2.26) is presented here as a single ODE, but can in general represent a

system of ODEs, which will be the case when discussing shooting methods. The solu-

tion to the IVP involves breaking [t0, tf ] into n subintervals, where the ith subinterval

is [ti, ti+1] with length hi = ti+1 − ti. In many applications, the lengths of the n

subintervals are equal and the size is denoted as h, but it is not necessary that the

subinterval lengths be equal. The objective is to find the solution at each ith node as
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given in [71], which can be written as:

xi+1 = xi +

∫ ti+1

ti

f(x(t), t)dt (2.27)

The techniques in this section are designed to estimate the integral in (2.27). The

subsections below outline time-marching algorithms to solve the IVP with extension

to shooting methods to solve a BVP and collocation techniques to solve the BVP.

2.3.1.1 Time-Marching and Shooting Methods.

A time-marching technique solves the IVP by using the solution of xi (x(t)) and

possibly more previous points to determine the subsequent xi+1 (x(t + h)) solution.

There are many ODE IVP solution techniques, but again, OC problems are BVPs

or Multi-Point Boundary Value Problems (MPBVP). These ODE solution techniques

still apply when implemented in a shooting algorithm that enables terminal boundary

conditions to be satisfied. Some of the most common solution methods for IVPs are

summarized here followed by a brief description of shooting methods.

There are several first-order approximations available to solve the IVP. The For-

ward Euler (FE), Backward Euler (BE), Leap Frog (LF), and Trapezoidal Method

(TM) given in [12, 67] are examples where difference formulas are used to discretize

the time derivative on the left-hand-side of (2.26) resulting in time-marching rules

given in Table 2.1. The Order of Error column indicates the magnitude of error in

Table 2.1. Simple numerical schemes for time-marching [12,67]

Method Equation Order of Error

FE xi+1 = xi + hf(xi, ti) O(h2)
BE xi+1 = xi + hf(xi+1, ti+1) O(h2)
LF xi+1 = xi−1 + 2hf(xi, ti) O(h3)
TM xi+1 = xi +

h
2 (f(xi+1, ti+1) + f(xi, ti)) O(h3)
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the estimate of xi+1 based on the truncated Taylor-series. For example, if h is 0.1,

then for the FE and BE the estimate errors will be on the order of 10−2 while the

LF and TM will have errors on the order of 10−3. Also note that the BE and TM

methods are implicit methods because the functions on the right-hand-sides of the

respective schemes are evaluated at the point being solved for on the left-hand-side.

An explicit scheme is necessary to estimate the solution xi+1 which is then used in the

right-hand-side of an implicit scheme. The implicit calculation of xi+1 then refines

the solution generated by the explicit equation [9,67]. These methods are reasonably

simple to implement, but can be computationally expensive since the step size must

be very small to accurately approximate derivatives using piecewise linear functions.

These methods also have stability limitations that can affect the solution if the step

size is not properly chosen [67, 71]. An improved second-order Euler method (error

O(h3)) is presented in [12] as:

xi+1 = xi +
h

2
f(xi, ti) +

h

2
f(xi + hf(xi, ti), ti+1) (2.28)

While this implicit scheme may provide more accurate estimates, there are generally

more effective time-marching algorithms that are preferred. The Taylor-series method

can be used to generate a scheme of potentially high accuracy [53]. A fourth-order

approximation (error O(h5)), assuming uniform time step, is achieved by writing out

the Taylor-series for xi+1 as:

xi+1 = xi + hx′(ti) +
h2

2!
x′′(ti) +

h3

3!
x′′′(ti) +

h4

4!
x(4)(ti) +O(h5) (2.29)

To use this equation it is necessary that the partial derivatives with respect to time

of f(x, t) exist up to the highest order derivative in the Taylor-series expansion cho-

sen, fourth derivative in this case. The difficulty with this method is that analyt-
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ical determination of the derivatives may become very difficult depending on the

composition of f(x(t), t). Fortunately, symbolic software manipulation packages like

MathematicaTMand Matlab!can help with the differentiation.

A more efficient method is the commonly used Runge-Kutta (R-K) scheme. The

classical fourth-order (error O(h5)) R-K scheme is discussed in [9, 12, 19, 53, 65] and

written as:

K1 = f(xi, ti)

K2 = f

(

xi +
h

2
K1, ti +

h

2

)

K3 = f

(

xi +
h

2
K2, ti +

h

2

)

(2.30)

K4 = f(xi + hK3, ti+1)

xi+1 = xi +
h

6
(K1 + 2K2 + 2K3 +K4)

Several modifications have been made to the classical R-K scheme to introduce an

adaptive step size. Two notable schemes, Runge-Kutta-Fehlberg [53] and Runge-

Kutta-Dormand-Prince algorithms, evaluate fourth- and fifth-order R-K estimates

and use the difference to determine the estimate error, which is then used to determine

the step size for the next iteration [19, 24]. The Dormand-Prince method is used in

the Matlab!ode45 ODE solver.

The methods used to solve the IVP thus far, Euler methods, LF, TM, Taylor-

series, and R-K, are single-step methods, meaning that only data from the previous

mesh point is needed to approximate xi+1 [12]. The R-K methods are known as

multiple-stage methods since they evaluate f(x, t) at multiple places in [ti, ti+1] to

calculate xi+1 as a weighted sum [71]. Multiple-step algorithms are designed to be

more efficient by using function evaluations from more than one previous time point.

Two of the most common methods are the explicit Adams-Bashforth (A-B) and im-
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plicit Adams-Moulton (A-M) schemes [9, 71]. Fifth-order A-B and A-M schemes are

given respectively as:

xi+1 = xi +
h

720
[1901f(xi, ti)− 2774f(xi−1, ti−1) + (2.31)

2616f(xi−2, ti−2)− 1274f(xi−3, ti−3) + 251f(xi−4, ti−4)]

xi+1 = xi +
h

720
[251f(xi+1, ti+1) + 646f(xi, ti) + (2.32)

−264f(xi−1, ti−1) + 106f(xi−2, ti−2)− 19f(xi−3, ti−3)]

The A-B and A-M schemes are often used together as a predictor-corrector scheme

where the A-B (2.31) is used to predict the value of xi+1 which is then corrected by

the A-M (2.32), improving the quality of the solution approximation [12, 53]. Since

the A-B and A-M schemes require either three or four previous function evaluations,

any of the single-step methods, R-K for example, can be used to start the process

until sufficient data is available for the A-B/A-M predictor-corrector to take over [12].

Now that a sampling of the most common time-marching methods for solving

IVPs has been presented, shooting methods can be described that allow the IVP

solution schemes to be used to solve the BVP [49, 71]. Consider the following ODE

to be solved on the interval t ∈ [t0, tf ] with given boundary conditions x0 and xf :

d2

dt2
x(t) = f(t, x(t),

d

dt
x(t))

x(t0) = x0 (2.33)

x(tf ) = xf

This ODE can be written as a first-order system of ODEs by changing variables.
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Letting x1 = x and d
dt
x1 = x2 leads to the following system of first-order ODEs that

can be solved by any of the previously described time-marching techniques.

d

dt
x1(t) = x2(t) (2.34)

d

dt
x2(t) = f(t, x1(t), x2(t))

The simple shooting method converts the BVP in (2.33) to an IVP in (2.34) by setting

the initial conditions as:

x1(t0) = x(t0) = x0 (2.35)

x2(t0) =
d

dt
x(t0) = u

An error function is necessary to refine guesses of u. The error function, E(u), can

be defined as:

E(u) = x(tf ; u)− xf (2.36)

Equation (2.36) basically describes the shooting method as a root-finding problem

where the objective is to find u such that E(u) is driven to zero [71]. Thus, the

procedure is as follows:

1. Set initial guess of u in (2.35)

2. Apply time-marching scheme of choice to integrate (2.34) from t0 to tf

3. Calculate E(u) using (2.36): The solution has been found if the error is within

a desired tolerance (ε), |E(u)| ≤ ε, else

4. Update guess of u using root-finding scheme. Newton’s method, modified New-

ton’s method, and secant method are some of the most common root-finding

algorithms.
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5. Repeat process until |E(u)| ≤ ε condition is achieved.

The simple shooting method is attractive to use because of its simplicity. However,

there are numerical shortcomings of this method, such as slow convergence [49] when

the guess of u is far from the root of (2.36), assuming that a globally convergent New-

ton method is being used that is guaranteed to find the root [53], or non-convergence

when applied to the OC problem due to “ill conditioning of the Hamiltonian dy-

namics” [71]. A multiple-shooting method can be used to alleviate these numerical

issues.

The multiple shooting method is based on the problem formulation given in (2.34) -

(2.36). The difference is that the time interval [t0, tf ] is broken intoM+1 subintervals,

where M is the number of interior mesh points, and shooting is applied over each

[ti, ti+1]j, j = 1, ...,M +1, subinterval. The values of x1 and x2 are unknowns in each

subinterval to be determined through time-marching and root-finding. Continuity

constraints are placed on adjoining j and j + 1 subinterval boundaries by:

xj
1,i+1 − xj+1

1,i = 0 (2.37)

xj
2,i+1 − xj+1

2,i = 0

Therefore, the root-finding problem is to find the ui+1 slopes that satisfy the continuity

conditions and the given boundary conditions [49, 53, 71].

The advantage of the multiple shooting method is that it is very flexible in the

types of constraints considered in OC problems, such as bounded states, controls,

and path constraints [78]. Very accurate results can be achieved while alleviating the

aforementioned numerical issues, but it is cumbersome to implement, considerable

analytical work may be required in deriving the costate equations, a good initial

guess of the solution is necessary, and may introduce discontinuities in a continuous
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problem that can not be resolved [49, 78]. Holsapple, Venkataraman, and Doman

developed a modified simple shooting method in [49] that combines the “favorable

aspects” of both the simple and multiple shooting methods resulting in a “superior,

faster method for solving TPBVPs.” This research shows that improving shooting

methods is still an active research topic in the OC community.

The shooting methods described in this section can be applied to the indirect

CV-based OC problem formulated by (2.21) - (2.23), according to [71]. Guesses are

made for the unknown initial conditions, time marching applied to solve the system

of ODEs, and error evaluation performed to check satisfaction of boundary conditions

at the end of the time interval. Refinements to guesses of the unknown conditions

are made through application of root-finding techniques and iterations made until the

solution is found that satisfies terminal constraints. The procedure is essentially the

same for both simple and multiple shooting methods with the exception that multiple-

shooting applies the algorithm over a specified number of subintervals introducing

more variables to be solved.

2.3.1.2 Indirect Collocation.

Collocation methods have become quite popular in the OC community over the

past couple of decades. They are very powerful techniques for solving the HBVP given

in (2.21) - (2.23). These methods are also very powerful in solving the OC problem

using direct methods, discussed in section 2.3.2. Collocation techniques form the

basis for the PSM, discussed in section 2.3.3, that will be used in this research. Rao

presents a brief description of collocation methods in [71] with the general idea being

that the unknown solution is approximated using a polynomial, or set of polynomials.

Unknown coefficients in the polynomials are simultaneously solved for using root-

finding techniques such that estimates of the states and derivatives of the states
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match the analytic function at a set of discrete points.

Again, consider the general BVP of the form:

d

dt
x(t) = f(x(t), t)

x(t0) = x0 (2.38)

x(tf ) = xf

This ODE can be a single function or a system of functions, which is generally con-

sistent with the EL state and costate equations. Also suppose that N discrete time

points are chosen in [t0, tf ], called collocation points and denoted as τi for i = 1, ...N ,

resulting in N +1 subintervals. The points can be chosen in various ways, and again,

the distance between two mesh points τi and τi+1 for i = 0, ..., N − 1 need not be

uniform. In fact, the mesh points used in the PSM are not uniformly spaced. Ad-

ditionally, depending on the method used to choose the collocation points, t0 and tf

may or may not be collocation points. For now, assume collocation points have been

specified. Options for choosing points will be discussed later in this section.

One collocation method is to use a piecewise polynomial, QK , of degree K, to

approximate the solution x(t) in each subinterval [ti, ti+1] as described in [71], which

is essentially a Finite Element Method (FEM) [14]. The form of the solution is:

x(t) ≈ QK(t) =
K
∑

k=0

ak(t− ti)
k, t ∈ [ti, ti+1] = Ii (2.39)

The coefficients (a0, ..., aK) are unknowns to be solved for such that the approximation

Q(t) matches x(t) at the collocation points, i.e. Q(τi) = x(τi), in the interval Ii.

Furthermore, the derivative, Q̇(t), found by differentiating (2.39), is set to match

f(x(t), t) at the collocation points, known as the collocation condition. In order to

find the unknown coefficients, a defect function, R, also referred to in the literature
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as the remainder, residual, or error function, is defined as:

Rj = Q̇(τj)− f(x(τj), τj), for j = 1, ..., N (2.40)

The defects, which are functions of the unknown coefficients, can be put into a matrix,

Z,

Z =













R1

...

RN













(2.41)

and the coefficients can be found simultaneously by applying a root-finding scheme

to solve Z = 0.

Another, more effective, collocation technique involves using global orthogonal

polynomial basis functions over the entire time interval. Instead of QK(t) defined by

(2.39), a polynomial approximation to the unknown solution x(t), as given in [33],

can be written as:

x(t) ≈ QK(t) =
N
∑

k=0

akφk(t) (2.42)

where φk is an orthogonal polynomial basis function. In the context of the OC solution

using the indirect CV-based formulation, the state (2.21), costate (2.22), and control

(2.23) (if not able to be isolated and substituted into the state and costate equations)

equations can be represented in this manner. The collocation points are chosen to be

the roots of an orthogonal polynomial of a given order [71]. There are a variety of

orthogonal polynomial basis functions that can be used such as Legendre, Chebyshev,

and Hermite polynomials [29, 68, 71]. Lagrange interpolating polynomials can also

be used instead of the orthogonal polynomials [14]. The most common collocation

methods used to solve OC problems are based on Lagrange interpolating polynomial
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bases, Li. Letting φk in (2.42) be a Lagrange interpolating polynomial gives:

φk(τ) " Lk(τ) =
N
∏

j=0
j %=i

τ − τj
τi − τj

(k = 0, ..., N) (2.43)

The advantage of using Lagrange polynomials in (2.42) is that they have the isolation

property, meaning:

Lk(τj) =















1 if k = j

0 if k (= j

(2.44)

which leads to coefficients, ak, in (2.42) being the values of the state at the collocation

points, i.e. ak = x(τk) [71].

The most common collocation point sets are Legendre-Gauss (LG), Legendre-

Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) points [28,33,37,71]. Chebyshev-

Gauss (CG), Chebyshev-Gauss-Radau (CGR), and Chebyshev-Gauss-Lobatto (CGL)

points can also be used [33]. These point sets are based on Gaussian quadrature rules,

are the roots of a particular polynomial, and are defined on the open, semi-open, or

closed interval of -1 to 1. Therefore, the time domain [t0, tf ] given in the problem

must be linearly transformed into the -1 to 1 domain, and transformed back once a

solution has been found. Fornberg gives a table in [33] with the details of these node

sets, which is summarized in Table 2.2.

The table shows that the LG, LGR, and LGL nodal sets are the roots of Leg-

endre polynomials (P) of the degree specified by the subscript and the CG, CGR,

and CGL are the roots of Chebyshev polynomials (T) defined by the recursion re-

lationships given. The last column of the table gives formulas for calculating the

weights associated with each point set to be used in Gaussian quadrature (numerical

integration). These weights, wk, will be used in the direct collocation method in the

PSM. Numerous Matlab!routines have been written and are available for download
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Table 2.2. Collocation points and Gaussian quadrature weights [33]

Point Set Domain Nodes (xk) Weights (wk)
(k = 0, ..., N) (k = 0, ..., N)

LG (−1, 1) Roots of PN+1 wk =
2

(1−x2
k)[P

′

N+1
(xk)]2

LGR [−1, 1) or (−1, 1] Roots of PN + PN+1 w0 =
2

(N+1)2

wk =
1

(N+1)2
1−xk

[PN (xk)]2

LGL [−1, 1] -1, Roots of P ′
N , 1 wk =

2
N(N+1)

2
[PN (xk)]2

CG (−1, 1) cos
[

(2k+1)π
2N+2

]

wk =
π

N+1

CGR [−1, 1) or (−1, 1] cos
[

2πk
2N+1

]

w0 =
π

2N+1

wk =
2π

2N+2

CGL [−1, 1] cos
[

πk
N

]

w0 = wN = pi
2N

wk =
π
N

from the MathWorks
TM

website to automatically calculate the collocation points and

quadrature weights given the number of desired points.

Solving the BVP in (2.38) using orthogonal collocation is the same as previously

stated. The coefficients (a0, ..., aK) are unknowns, the polynomial approximation Q(t)

and its derivative are set to match x(t) and f(x(t), t) respectively at the collocation

points. The defect matrix defined by (2.40) and (2.41) is constructed to simultane-

ously solve for the unknown coefficients using root-finding to solve Z = 0.

Solving the HBVP given in (2.21) - (2.23) is a natural extension of the process

described here. Each of the states, costates, and controls making up the state vector

x(t), costate vector λ(t), and control vector u(t) are approximated using a series of

Lagrange polynomials as given in (2.42) and (2.43), the coefficients of which are the
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unknowns to be found. A set of collocation nodes is chosen from Table 2.2, the defect

matrix is constructed, and nonlinear root-finding method is applied as stated above.

Fahroo and Ross demonstrated this method by using Legendre polynomial approxi-

mations for x, u, and λ, collocated at LGL points to solve a sample problem in [27],

concluding that the global orthogonal collocation method is an effective alternative

to multiple-shooting techniques to solve the HBVP.

2.3.2 Direct Methods.

Indirect methods transform the continuous-time OC problem, stated by equations

(2.7) - (2.11) introduced in section 2.2.1, into the Hamiltonian system characterized

by (2.15). Solving the ODEs, analytically if possible, but most often numerically,

associated with minimizing H in (2.21) - (2.23), applying the appropriate boundary

conditions, and applying the PMP (2.25) indirectly minimizes the original cost func-

tional (2.7). Direct methods, on the other hand, apply an appropriate discretization

to the OC problem directly transforming it from an infinite-dimensional continuous-

time problem to a finite-dimensional discrete-time problem which then can be solved

using nonlinear programming by iteratively searching for the state and control solu-

tions that meet optimality conditions while satisfying constraints and evaluating the

cost function to verify that it is a minimum [71]. Direct methods are attractive since

it is not necessary to explicitly derive the first-order optimality conditions or to de-

termine if the inequality constraints are active. The convergence of direct methods is

less sensitive to the initial guess and do not require a guess for the costates [7]. How-

ever, direct methods are less accurate than indirect methods and there may actually

be several minimizing solutions making it possible for the result to be incorrect [78].

Since direct methods do not provide costate information, there can be some uncer-

tainty as to whether the NLP optimal solution is truly the optimal solution [50]. This
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subsection briefly summarizes direct methods commonly used to solve OC problems.

2.3.2.1 Nonlinear Programming.

The NLP problem is generally stated, as presented in [61] and [71], as:

minimize f(z)

subject to h(z) = 0 (2.45)

g(z) ≤ 0

where z ∈ Rn is the vector of design variables, f(z) is the objective functional, and

h(z) and g(z) are the constraints. If there are m equality constraints and p inequality

constraints, then h(z) ∈ Rm and g(z) ∈ Rp. The first-order necessary conditions for

an optimal solution, z∗, are given by the following KKT conditions:

∇f(z∗) + λT∇h(z∗) + µT∇g(z∗) = 0

hi(z
∗) = 0 (i = 1, ..., m)

gi(z
∗) ≤ 0 (i = 1, ..., p) (2.46)

µi ≥ 0 (i = 1, ..., p)

µigi(z
∗) = 0 (i = 1, ..., p)

where ∇ indicates the gradient of the argument function and λ ∈ Rm and µ ∈

Rp are Lagrange multipliers associated with the equality and inequality constraints

respectively. The second-order sufficient conditions for optimality are obtained from

the Hessian (matrix of second-order partial derivatives) of the Lagrangian functional.
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The Lagrangian, l, is given by:

l(z) = f(z) + λTh(z) + µTg(z) (2.47)

The Hessian of the Lagrangian, evaluated at the candidate optimal solution, is then:

L(z∗) = F(z∗) + λTH(z∗) + µTG(z∗) (2.48)

where L(·), F(·), H(·), and G(·) denote the Hessian matrices of l(·), f(·), h(·), and

g(·) respectively, following the notation in [61]. The second-order necessary condition

is that in addition to the conditions in (2.46) being satisfied, the Hessian of the

Lagrangian function (2.48) be positive-definite at the candidate z∗.

An NLP method is an iterative search algorithm. It searches through the space

bounded by the constraints in (2.45) to find candidate minimum points, z∗, that

satisfy the constraints with the lowest cost. The optimality conditions in equations

(2.46) and (2.48) are checked at the candidate points to determine whether each is

a minimum, maximum, or saddle point. The key elements in the search algorithm

are determining the direction in the space and the size of the step that should be

taken in that direction to find successive candidate points [71]. Care must be taken

in selecting and implementing the appropriate search algorithm in order to find a

minimum solution and to have some kind of guarantee that the algorithm is globally

convergent. That is to say that the point that is found when the algorithm terminates

is the global minimum or at least an acceptable local minimum in a small vicinity of

the global solution [61]. Rao discusses the most common gradient search algorithms

in [71] along with some heuristic ones that use some added randomness to direct the

search. Luenberger and Ye present several algorithms in [61] that are effective in

solving nonlinear constrained optimization problems. They also present proofs that
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specify conditions for guaranteeing local and global minimum solutions.

Gradient methods are effective search algorithms using the gradient vector and

Hessian matrix to select a direction of descent such that the objective function f(xk+1)

sufficiently decreases [61]. One of the most common classes of descent methods uses

the following to select subsequent points in the iterative process:

zk+1 = zk − αkdk (2.49)

The step size, αk, is calculated to minimize f and the search direction, dk, is given

by:

dk = [F(zk)]
−1∇f(zk)

T (2.50)

which is a modified Newton method [61]. The steepest descent method is obtained if

the inverse of the Hessian matrix, [F(zk)]
−1, is replaced with the identity matrix [61].

This process depends on the second partial-derivatives of f existing and inversion of

the resulting Hessian matrix at each iteration. Further modifications to the Newton

method exist to approximate the inverse of the Hessian to avoid costly computation

of the inverse at each iteration [61].

Shooting, multiple shooting, and collocation methods described in section 2.3.1

can be applied to solve the direct OC problem using NLP techniques. The concepts

discussed for indirect methods are similar in direct methods, with some modifications.

Rao presents algorithms for shooting and multiple shooting in [71] and Betts discusses

several shooting and time-marching methods in the context of NLP formulation in

[9]. Becerra’s paper [6] discusses translating a continuous-time OC problem into

an NLP problem and solves an example problem of controlling the movement of a

pendulum-like system described by ODEs derived using Newton’s Second Law. The

main idea of all these schemes, as stated in these references, is that they provide
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some way of choosing N discrete points the time domain, denoted as τi (i = 1, ..., N),

approximating the cost function by replacing the integral with a finite summation,

and discretizing the dynamics equations. Conceptually, the discretization process

leads to:

J(x(t),u(t), t) =⇒ J(x(τi),u(τi), τi)

ẋ = f(x(t),u(t), t) =⇒ x(τi+1) = f(x(τi),u(τi), τi)

After the discretization scheme has been applied, the NLP definition (2.45) looks like:

minimize J(x(τi),u(τi), τi)

subject to x(τi+1)− f(x(τi),u(τi), τi) = 0

umin − ui ≤ 0, ui − umax ≤ 0

xmin − xi ≤ 0, xi − xmax ≤ 0 (2.51)

x(t0) = x0

x(tf) = xf

for i = 1, ...,M

Other constraints, like path constraints, can be added to (2.51) as dictated by the

problem. In contrast to the CV-based indirect methods, bounds on the states can be

directly included in the NLP formulation as inequality constraints.

2.3.2.2 Direct Shooting and Collocation.

To summarize the shooting and collocation methods using the NLP formulation,

it can be stated that these methods are simply ways of representing the integral

cost function as a discrete sum and using discrete expressions for the solution of
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the dynamic constraints. Note that the step size between two successive points is

hi = ti+1 − ti, where i = 1, ..., N . The index on the step size can be dropped if

the step sizes are equal. A quadrature rule for evaluating the cost functional (2.7)

is necessary and should be selected to be consistent with the method used to solve

the differential equation (2.8). For example, if an R-K scheme is used to solve the

differential dynamics equations, then an R-K scheme of the same order should be used

to evaluate the cost functional. An effective way to accomplish this is to augment the

state vector, recalling that the size of the state vector is n× 1, with:

ẋn+1 = g(x(t),u(t), t) (2.52)

resulting in the new set of differential equations:













ẋ(t)

. . .

ẋn+1(t)













=













f(x(t),u(t), t)

. . .

g(x(t),u(t), t)













(2.53)

The cost function can then be evaluated after the time-marching scheme has been

applied using:

J = h(x(tf ), t) + xn+1(tf) (2.54)

In both the shooting and multiple shooting methods, the control is approximated

using a parameterization of the form:

u(t) ≈
N
∑

i=1

aiψi(t) (2.55)

The coefficients, ai, are determined using NLP and ψi(t) are basis functions of choice.

The shooting method presented in [71] and [9] can be summarized as an NLP problem
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with the following steps:

1. Make initial guess of unknown coefficients, ai.

2. Integrate state equation (2.8) over the interval [t0, tf ] using the parameterized

control by applying a time-marching method discussed in section 2.3.1.1.

3. Evaluate the error between the solution and the specified boundary conditions.

4. Evaluate the cost functional using numerical integration.

5. If the cost is not at a minimum value and/or the boundary conditions have not

been met, then update the values of ai using a gradient method and repeat

steps 2 through 5.

Multiple shooting uses the same procedure but applies the shooting method over

each of the N + 1 subintervals in [t0, tf ] and ensures that continuity is enforced at

the interfaces between subintervals. In essence, the shooting method treats the OC

problem over the interval as a single problem, whereas multiple shooting treats the

OC problem as N + 1 subproblems connected together at the subinterval interfaces.

Direct collocation is again similar to collocation methods described for indirect

methods. The difference between indirect and direct collocation is that the differential

equations for the costates do not need to be derived or evaluated and a quadrature

scheme is used to approximate the integral in the cost functional (2.7), similar to

using the procedure given by equations (2.52) - (2.54). Suitable discrete approxima-

tions of the states are made using some type of polynomial basis functions, which

can be piecewise or global, similar to equations (2.39) and (2.42). Additionally, the

direct method approximates the control functions in the same way that the states

are approximated. These equations are then cast in the NLP formulation in (2.45)

and solved for the states and controls at each τi that satisfy the KKT conditions, are
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within the boundaries specified by inequality constraints on the states and controls,

and result in the minimum cost value.

At this point, it’s more valuable to focus on direct global orthogonal collocation

since it is a key piece of the PSM described in the next section. Only the key equa-

tions are summarized here in order to avoid excessive repetition in the next section

where further discussion will be essential to describing the PSM. These equations are

presented in a general sense noting that there will be variations depending on the

sets of collocation points and orthogonal polynomial bases chosen. The first step is

to select the set of N collocation points, τi (i = 1, ..., N), and calculate the associated

quadrature weights, wi, using possible basis sets in Table 2.2, recalling that the time

domain t ∈ [t0, tf ] needs to be linearly mapped to τ ∈ [−1, 1]. Next, a Gaussian

quadrature rule is used to approximate the integral in the cost functional. Re-writing

(2.7) to replace the integral with Gaussian quadrature gives:

J(x(τ),u(τ), τ) = Φ(x(1), tf ) +
tf − t0

2

N
∑

i=1

g(x(τi),u(τi), τi) (2.56)

The state and control functions can be approximated using a class of functions known

as cardinal functions1, Ci, given by:

x(τ) ≈
N
∑

i=1

x(τi)Ci(τ) (2.57)

u(τ) ≈
N
∑

i=1

u(τi)Ci(τ)

1The term cardinal functions was first used by Sir Edmund Whittaker in work published in 1915.
It refers to orthogonal polynomial or trigonometric basis functions used to approximate functions
using polynomial interpolation. These functions have the property that the ith cardinal function is
equal to one at the ith collocation node and zero elsewhere. Cardinal functions are also known as
the Lagrange basis and the Fundamental polynomial of Lagrangian interpolation [13, 14]
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The cardinal functions can be constructed using Chebyshev, Legendre, Laguerre, or

Hermite orthogonal polynomial basis functions [14], and have the general form:

Ci(τ) =
φN+1(τ)

φ̇N+1(τi)(τ − τi)
(2.58)

with the property:

Ci(τj) = δi,j (2.59)

where δi,j is the Kronecker delta function. Lagrange interpolating polynomial bases

are commonly used as the cardinal functions when applying direct collocation methods

to solve OC problems, which have the form:

Li(τ) =
N
∏

j=1
j %=i

τ − τj
τi − τj

(2.60)

Using (2.57) with Lagrange interpolating polynomial bases (2.60), the dynamics in

(2.8) can be approximated as:

ẋ(τ) ≈
N
∑

i=1

x(τi)L̇i(τ) (2.61)

Again, the right-hand-sides of (2.8) and (2.61) are set to match at the collocation

points, resulting in the following equality constraint for the NLP:

N
∑

i=1

x(τi)L̇i(τ)− f(x(τ),u(τ), τ) = 0 (2.62)

These are the key elements necessary to transcribe the OC problem into an NLP

problem using global orthogonal collocation. The NLP can be constructed to solve

for the states and controls that satisfy first- and second-order optimality conditions,

are within the boundaries specified by the inequality constraints, and result in the
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minimum cost functional value.

2.3.3 Pseudospectral Methods.

The discussion of numerical techniques for solving OC problems has been purpose-

fully presented in a way that builds up to the PSM presented in this subsection. The

PSM combines many of the previously discussed numerical tools into a very powerful

numerical method, and has been generally presented as global orthogonal collocation

in sections 2.3.1.2 and 2.3.2.2, but with details purposely left out until this section.

Indirect methods use global orthogonal collocation as a discrete approximation of

the HBVP first-order optimality conditions and numerically solve for x(t), u(t), and

λ(t) that minimize H(·), thus indirectly minimizing J(·), using root finding schemes.

Direct methods use global orthogonal collocation to approximate x(t) and u(t), and

Gaussian quadrature to approximate the integral cost functional, J(x(t),u(t), t). The

discretized continuous-time OC problem can then be solved using NLP techniques.

This section begins with a brief description of spectral methods, discusses terminology

to distinguish between spectral and pseudospectral methods, followed by a formulation

of the direct Gauss Pseudospectral Method and software that is used in this research.

2.3.3.1 General Discussion of Spectral Methods.

References [14] and [33] provides excellent development and application of spectral

methods to solve differential equations. Spectral methods are fundamentally a family

of methods used to solve differential equations of the form:

Lu(x) = f(x) (2.63)

where L is a general linear operator that can represent either differential or integral

operators. To solve the equation, the unknown solution is represented as a series of
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N + 1 basis functions φn(x) as:

u(x) ≈ uN(x) =
N
∑

n=0

anφn(x) (2.64)

and substituted into (2.63) to give:

LuN(x) ≈ f(x) (2.65)

The goal then is to choose the expansion coefficients, an, that minimizes the residual

function:

LuN(x)− f(x) = R(x; a0, a1, ..., an) (2.66)

The beauty of spectral methods is that L can be expressed as either a differentiation

or integration matrix translating the differential equation to a matrix equation where

matrix solvers can then be used to determine the expansion coefficients. With non-

linear problems, equation (2.65) generates a system of nonlinear algebraic equations

that necessitates iterative solution techniques such as Newton’s method or a variant

thereof.

The difference between spectral methods lies in how the residual function is min-

imized. The term spectral methods is a broad term to include two main categories of

methods: interpolating and non-interpolating.

Interpolating methods are known as pseudospectral methods. These methods as-

sociate a set of grid points with a selected basis function, as described by Table 2.2,

and find the expansion coefficients such that R(x; a0, a1, ..., an) = 0. In other words,

the function and the polynomial representation of the function exactly match at the

grid points. Thus, uN(x) converges to u(x) as N increases and, because the points

are chosen according to the aforementioned table, the convergence rate is exponen-
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tial, also called spectral convergence. Furthermore, the error of the pseudospectral

approximation is ≈ O[ 1
N
]N [14]. Other names used for the pseudospectral method are

orthogonal collocation, which has been used in this document, and method of selected

points. Pseudospectral is also used to imply that global basis functions are being used

and that the function values are unknowns, as opposed to interpolation where the

function values are known and finding the expansion coefficients can be easily solved

for in order to approximate the function with an interpolating polynomial.

The keys to pseudospectral methods lie in selecting appropriate basis functions and

collocation points. Boyd presents theorems and proofs showing convergence of several

polynomial bases and that orthogonal polynomial basis functions with collocation

points chosen to be Gaussian quadrature points, i.e. the roots of the N th, (N + 1)th,

or combination of the two as given in Table 2.2, provides the best possible result for

both integral and derivative forms of (2.63). After presenting the proofs, Boyd states:

...since quadrature formulas are obtained by analytical integration of the
interpolating polynomial, it follows that the best choice of quadrature
points is also the best choice of interpolation points and vice-versa.

and that as a rule of thumb:

The grid points should be the abscissas of a Gaussian quadrature associ-
ated with the basis set.

This is the reason why collocation methods presented earlier are chosen to solve OC

problems.

Solving the pseudospectral problem involves either inverting the L matrix and

performing the matrix multiplication L−1f or using a Newton solver in the nonlinear

case. The attractive feature of this method is that only evaluations of f at the
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collocation points are necessary to solve the problem. In contrast, as will be shown

below, the Galerkin spectral method requires integration of the function.

Non-interpolating methods are often used as reference to Galerkin methods. The

literature can, however, be confusing on terminology. Some references use the term

spectral method as a synonym for Galerkin method, while others, like [14], use the

convention adopted in this document where the term spectral methods is an umbrella

that covers both pseudospectral and Galerkin methods as well as some others not

presented here. The non-interpolating, i.e. Galerkin method, does not use a collo-

cation grid, but determines the expansion coefficients by integration resulting from

inner products with test functions. The general formulation and solution of a differ-

ential equation using the Galerkin method is briefly shown here. Only basic details

are given here for comparison with the pseudospectral method and as motivation for

using pseudospectral rather than Galerkin methods. Refer to [14] for more details on

the Galerkin method.

Assume that L in equation (2.63) and (2.65) is a linear operator, either differential

or integral. The Galerkin method solves the differential equation by introducing a test

function or weight function φi and using it to take the inner products of both sides

of (2.63) orthogonally projecting the approximation error onto the space spanned by

the polynomial bases resulting in minimum error. Denoting the new linear operator

H and function g after the inner product gives the following matrix equation:

Ha = g (2.67)

where the elements of H and g are given by the inner products:

Hij = (φi, Lφj) for i, j = 1, ..., N + 1 (2.68)

gi = (φi, f)
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The inner products in (2.68) require integration operations to fill each element in H

and f , which makes coding the Galerkin method more complicated than the pseu-

dospectral method. Note that even though the Galerkin formulation does not directly

use collocation points, they do become necessary to apply Gaussian quadrature, as

described in section 2.3.2.1, to numerically approximate the inner product integrals.

Therefore, the Galerkin and pseudospectral methods are equivalent if the Galerkin

quadrature points are the same as the pseudospectral collocation points and the ac-

curacy of the pseudospectral is comparable to that of the Galerkin method. Boyd

states that a Galerkin method using N expansion terms is equal in accuracy to the

pseudospectral method using N + 1 or N + 2 terms.

Now all the pieces are in place to discuss the Gauss Pseudospectral Method applied

to solve OC problems.

2.3.3.2 Gauss Pseudospectral Method for Optimal Control.

When it comes to solving differential equations, either Partial Differential Equa-

tion (PDE)s or ODEs, there are many PSMs available. The differences between meth-

ods are determined by the orthogonal polynomial basis functions chosen for spectral

representation of the solution and the collocation points used. Reference [14] primar-

ily discusses Fourier and Chebychev methods, [33] presents other methods, and [60]

presents a Chebyshev method for solving BVPs. For example, Legendre polynomial

basis functions can be used with Legendre-Gauss collocation points, Chebyshev poly-

nomials with Chebyshev points, and so on. Lagrange interpolating polynomial basis

functions can always be used in place of the other basis sets [14]. The HBVP can

be solved using any of these combinations of basis functions and collocation points,

such as in [27] where Lagrange polynomial bases combined with Chebyshev colloca-

tion points were used. However, since the first-order optimality conditions of the OC

51



problem given by (2.21) - (2.23), the associated boundary conditions, and switching

conditions of the inequality constraints (2.10) may be extremely difficult to derive,

it’s attractive to use the direct PSM to solve OC problems, however the additional re-

quirement of minimizing the cost functional makes direct OC solution methods more

difficult than simply solving a set of differential equations [50].

The most common PSMs used to directly solve nonlinear OC problems have the

same general procedure that parameterizes the states, x(t) ∈ Rn, and controls,

u(t) ∈ Rm, using Lagrange interpolating polynomials, discretizes the constraints

(2.8) - (2.10) and the general Bolza cost functional (2.7) using a quadrature rule,

converting the differential dynamic constraints to algebraic constraints, and applies

an NLP solver to find the solution to the resulting parameter optimization prob-

lem [7, 8, 28, 29, 50]. Some of the most common direct PSMs are the Legendre Pseu-

dospectral Method (LPM) [26, 28], Chebyshev Pseudospectral Method (CPM) [29],

GPM, and Radau Pseudospectral Method (RPM) [7, 36, 50]. Several software pack-

ages, a sampling of which are listed in [50], have been developed to directly solve

the continuous-time OC problem by discretizing and transcribing it into an NLP

problem using this general procedure. Two common packages, both written for use

in Matlab!and using SNOPT [42] as the NLP solver, are DIDO [1], which imple-

ments the Legendre pseudospectral method developed in [28], and GPOPS [72], which

implements the GPM developed in [8], [50], and [7].

Selecting which PSM to use to solve the direct formulation of the OC problem can

be confusing. It’s known that solving the HBVP provides guarantees on meeting the

optimality conditions [8,29]. Significant research efforts have focused on determining

which method to use for specific problem sets, for example finite horizon, infinite

horizon, etc. [30,35]. Regardless of the method chosen, it is advantageous to select a

direct PSM that has been shown to have some equivalence to the numerical solution of

52



the continuous CV-based HBVP. One such method is the GPM, which Benson derived

in [7]. Benson showed how the continuous-time OC problem can be transcribed

to a NLP problem using Lagrange interpolating polynomial bases of degree N to

parameterize the states and controls at N + 1 LG collocation points. Benson also

proposed and provided proof of the following theorem:

The Karush-Kuhn-Tucker (KKT) conditions of the NLP are exactly equiv-
alent to the discretized form of the continuous first-order necessary condi-
tions of the Bolza problem. Furthermore, a costate estimate can be found
from the KKT multipliers, Λ̃k [costates of the pseudospectral represen-
tation of the OC problem], and Lagrange multipliers, ν, that satisfy the
pseudospectral approximation to the costate dynamics.

Benson was able to conclude that solving the OC problem using direct transcription

to an NLP problem is “exactly equivalent to solving the discretized form of the contin-

uous first-order necessary conditions” given by the HBVP. Reference [8] summarizes

the GPM development, pseudospectral representation of the CV-derived HBVP, and

proves equivalence of the KKT conditions of the NLP and the first-order continuous

necessary conditions of the HBVP.

Huntington extended Benson’s work in [50] by adding inequality path constraints

to the GPM formulation and again showed equivalence between the KKT multipliers

and the first-order optimality conditions of the HBVP. He also investigated the same

equivalence of the LPM, based on LGL collocation points, and the RPM, based

on LGR collocation points, and showed mapping relationships between the KKT

multipliers and the costates of the HBVP, noting that the GPM had the most direct

mapping relationships, particularly at the endpoints. Fahroo and Ross have also

studied the equivalence of the LPM KKT optimality conditions and the optimality

conditions of the HBVP, noting that the KKT multipliers “...satisfy a discrete analog

of the costate dynamics” at the interior points giving a check that the solution meets
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optimality conditions. Similar to Benson, Huntington concluded that, although all

three methods provide a mapping between the NLP KKTs and the HBVP costates,

“...solving the NLP derived from Gauss pseudospectral transcription is equivalent

to applying Gauss pseudospectral discretization to the continuous-time first-order

optimality conditions.” The main take-away from Huntington’s work is that while

researchers are currently investigating convergence of the direct transcription to the

HBVP, equivalence of the KKT multipliers with first-order optimality conditions gives

confidence that an optimal solution has been found.

The key equations transforming the continuous OC problem to a parameter op-

timization problem used by GPOPS and solved with SNOPT as derived in [7, 50]

and summarized in [8, 72] are paraphrased below since GPOPS is a key tool used

extensively in the research presented in this dissertation. Some repetition of previous

sections will be evident, but is necessary for continuity in describing how GPOPS

discretizes the continuous OC problem and transcribes it to the NLP problem for

SNOPT to solve. In discussing the GPOPS implementation, there will be some nota-

tion deviation from the general discussion presented in previous sections. Again, this

is necessary for the sake of continuity in discussing the specific implementation.

The continuous Bolza OC problem can be stated as [8, 72]: Determine the state,

x(τ) ∈ Rn, and control, u(τ) ∈ Rm, and the terminal time, tf if unknown, to minimize

the cost functional:

J = Φ(x(−1), t0,x(1), tf) +
tf − t0

2

∫ 1

−1

g(x(τ),u(τ), τ ; t0, tf)dτ (2.69)

subject to the differential (dynamic), boundary, and path constraints, respectively:

dx

dτ
=

tf − t0
2

f(x(τ),u(τ), τ ; t0, tf) (2.70)
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φ(x(−1), t0,x(1), tf) = 0 ∈ R
q (2.71)

C(x(τ),u(τ), τ ; t0, tf) ≤ 0 ∈ R
c (2.72)

Note that equations (2.69) - (2.72) have been written in the time variable τ to be

in the proper domain for the GPM. Linear transformations between t ∈ [t0, tf ] and

τ ∈ [−1, 1] are accomplished by:

t =
tf − t0

2
τ +

tf + t0
2

(2.73)

The GPM process is to discretize the continuous equations (2.69) - (2.72) and tran-

scribe them into an NLP problem. The process begins by choosing N LG collocation

points ∈ (−1, 1), noting that the endpoints are not included in the set. The states,

x(τ), and controls, u(τ), are approximated using N or N + 1 Lagrange interpolating

polynomials of the form:

x(τ) ≈ X(τ) =
N
∑

i=0

X(τi)L
x
i (τ) (2.74)

u(τ) ≈ U(τ) =
N
∑

i=1

U(τi)L
u
i (τ) (2.75)

where lower case symbols, x(τ) and u(τ), denote the continuous state and control

vectors while the capitalized symbols, X(τ) and U(τ), represent the corresponding

polynomial approximations. Additionally, superscripts x and u are used to distinguish

between Lagrange polynomials representing the state and control approximations,

respectively. The Lagrange polynomials have the form:

Lx
i (τ) =

N
∏

j=0
j %=i

τ − τj
τi − τj

(i = 0, ..., N) (2.76)
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Lu
i (τ) =

N
∏

j=1
j %=i

τ − τj
τi − τj

(i = 1, ..., N) (2.77)

and satisfy the isolation property:

Lx
i (τj) =















1 if i = j

0 if i (= j

(i = 0, ..., N)

Lu
i (τj) =















1 if i = j

0 if i (= j

(i = 1, ..., N)

The differential dynamic constraints (2.70) are approximated by differentiating (2.74):

ẋ(τ) ≈ Ẋ(τ) =
N
∑

i=0

x(τi)L̇i(τ) (2.78)

The derivatives of the Lagrange polynomials evaluated at the LG collocation points

can be written in a differentiation matrix, D, which has dimension N × N + 1, and

whose elements are expressed as:

Dki = L̇i(τk) =
N
∑

l=0

∏N
j=0
j %=i,l

(τk − τj)

∏N
j=0
j %=i

(τi − τj)
(2.79)

where the counting indices are k = 1, ..., N and i = 0, ..., N . The dynamic constraints

(2.70) are discretized and transformed into algebraic constraints suitable for the NLP

solver using (2.74), (2.75), (2.78), and (2.79) as follows:

N
∑

i=0

DkiXi −
tf − t0

2
f(Xk,Uk, τk; t0, tf ) = 0 (k = 1, ..., N) (2.80)

For clarity, shorthand notation definitions used in the GPM development are sum-
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marized in the following list:

• Xk ≡ X(τk) ∈ Rn for k = 1, ..., N .

• Uk ≡ U(τk) ∈ Rm for k = 1, ..., N .

• X0 ≡ X(−1), where τ = −1 is not a collocation point.

• Xf ≡ X(1), where τ = 1 is not a collocation point.

• gk ≡ g(Xk,Uk, τk; t0, tf )

• fk ≡ f(Xk,Uk, τk; t0, tf)

• Cjk ≡ Cj(Xk,Uk, τk; t0, tf)

• H̃k ≡ H̃(Xk, Λ̃k, Λ̃F , µ̃k,Uk, τk; t0, tf), where the Hamiltonian, H̃k, and La-

grange multipliers, Λ̃k, Λ̃F , and µ̃k are defined later.

SinceX(τ) andU(τ) are not collocated at the endpoints, it’s necessary to approximate

the terminal state, Xf , using Gaussian quadrature:

Xf = X0 +
tf − t0

2

N
∑

k=1

wkf(Xk,Uk, τk; t0, tf ) (2.81)

The NLP cost function will be a discretized form of (2.69), which is again generated

using Gaussian quadrature to approximate the integral term. The discretized cost

functional is:

J = Φ(X0, t0,Xf , tf) +
tf − t0

2

N
∑

k=1

wkg(Xk,Uk, τk; t0, tf) (2.82)

The last necessary items for the NLP transcription are discretized forms of the bound-

ary constraints (2.71) and path constraints (2.72), stated as:

φ(X0, t0,Xf , tf) = 0 (2.83)
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and:

C(Xk,Uk, τk; t0, tf) ≤ 0 (k = 1, ..., N) (2.84)

With the discretization given above, the NLP problem can be stated as: find Xk

andUk that minimizes (2.82) subject to (2.80), (2.81), (2.83), (2.84), andX(τ0) = X0.

GPOPS calls the SNOPT NLP solver to find the solution, which is an approximate

solution to the continuous Bolza OC problem.

The NLP solver searches for the solution that satisfies the KKT conditions. The

KKT conditions, similar to those introduced in section 2.3.2.1, are listed below, again

paraphrasing [8]. They are found using the augmented cost functional, also known as

the Lagrangian, which is analogous to (2.13), constructed by adjoining the discrete

constraints with the discretized cost functional though introduction of Lagrange mul-

tipliers ν̃, µ̃, and Λ̃. The augmented cost function is given by:

Ja = Φ + tf−t0
2

∑N
k=1wkg − ν̃Tφ−

∑N
k=1 µ̃

T
kC

−
∑N

k=1 Λ̃
T

k

[

∑N
i=0DkiXi − tf−t0

2 f
]

(2.85)

−Λ̃
T

F

[

Xf −X0 − tf−t0
2

∑N
k=1wkf

]

The arguments of the functions have been dropped for readability. Analogous to the

development of the first-order necessary conditions of the continuous OC problem

developed in section 2.2.2, the KKT conditions are found by setting to zero the

partial derivatives of Ja with respect to X0, Xk, Xf , Uk, Λ̃k, Λ̃f , µ̃k, ν̃, t0, and tf .

Defining the discretized Hamiltonian, H̃k, as:

H̃k ≡ gk +

(

Λ̃
T

k

wk

+ Λ̃
T

F

)

fk −
2

tf − t0

µ̃T
k

wk

Ck (2.86)

and substituting into the equations for the partial derivatives, yields the following set

58



of KKT conditions that must be satisfied for an optimal solution:

N
∑

i=0

XiDki −
tf − t0

2
fk = 0 (2.87)

−
N
∑

i=1

(

Λ̃
T

i

wi

+ Λ̃
T

F

)

wi

wk

Dik + Λ̃
T

F

N
∑

i=1

wi

wk

Dik (2.88)

−tf − t0
2

[

− ∂gk
∂Xk

−
(

Λ̃
T

k

wk

+ Λ̃
T

F

)

∂fk
∂Xk

+
2

tf − t0

µ̃T
k

wk

∂Ck

∂Xk

]

= 0

∂gk
∂Uk

+

(

Λ̃
T

k

wk

+ Λ̃
T

F

)

∂fk
∂Uk

− 2

tf − t0

µ̃T
k

wk

∂Ck

∂Uk

= 0 (2.89)

φ(X0, t0,Xf , tf) = 0 (2.90)

Λ̃
T

0 +
∂Φ

∂X0
− ν̃T ∂φ

∂X0
= 0 (2.91)

Λ̃
T

F − ∂Φ

∂Xf

+ ν̃T ∂φ

∂Xf

= 0 (2.92)

−tf − t0
2

N
∑

k=1

wk

∂H̃k

∂t0
+

1

2

N
∑

k=1

wkH̃k −
∂Φ

∂t0
+ ν̃T ∂φ

∂t0
= 0 (2.93)

tf − t0
2

N
∑

k=1

wk

∂H̃k

∂tf
+

1

2

N
∑

k=1

wkH̃k +
∂Φ

∂tf
− ν̃T ∂φ

∂tf
= 0 (2.94)

Ck ≤ 0 (2.95)

µ̃jk :















= 0 when Cjk < 0

≤ 0 when Cjk = 0

(2.96)

Xf = X0 +
tf − t0

2

N
∑

k=1

wkf(Xk,Uk, τk; t0, tf ) (2.97)
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Λ̃F − Λ̃0 −
tf − t0

2

N
∑

k=1

wk

[

− ∂gk
∂Xk

−
(

Λ̃
T

k

wk

+ Λ̃
T

F

)

∂fk
∂Xk

+
2

tf − t0

µ̃T
k

wk

∂Ck

∂Xk

]

= 0

(2.98)

The pseudospectral discretization and NLP transcription formulation given by

equations (2.74) - (2.84) form the basis for GPOPS software. The NLP problem is

then solved by calling SNOPT to find the solution that minimizes the cost functional

(2.82) and satisfies the KKT conditions (2.87) - (2.98). Reference [8] continues by

formulating the pseudospectral numerical solution to the HBVP to show equivalence

between the KKT multipliers and costates of the numerical HBVP approximation,

showing that the GPM generates a solution that well approximates the numerical so-

lution to the HBVP. Therefore, the GPM as coded in GPOPS is a powerful numerical

tool for solving many types of OC problems.

2.3.4 Numerical Methods for Optimal Control Summary.

Topics related to numerically solving both indirect and direct formulations of the

OC problem have been described in this section. Numerical methods applied to the

indirect formulation solve the OC problem that has been converted to the Hamilto-

nian Boundary Value Problem while methods applied to the direct formulation solve

the OC problem directly by transcribing the original problem into a parameter opti-

mization problem and applying nonlinear programming techniques. This section has

been presented purposely to discuss basic numerical techniques that when combined

result in very powerful pseudospectral methods, particularly the Gauss Pseudospec-

tral Method. References have also been provided that show equivalence between the

direct pseudospectral and indirect pseudospectral solutions, adding confidence that

direct pseudospectral transcription methods generate solutions that meet first-order

optimality conditions derived via the Calculus of Variations. Lastly, a brief summary

of the key equations in the development of the Gauss Pseudospectral Method and the
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Karush-Kuhn-Tucker optimality conditions were presented in order to put together

the key concepts of collocation and nonlinear programming applied to solving OC

problems. This formulation is the basis for the Gauss Pseudospectral Optimization

Software which performs pseudospectral discretization of the continuous OC problem,

formulates the nonlinear programming problem, and calls the nonlinear programming

solver to find the solution that meets optimality conditions. This is a powerful soft-

ware tool that will be combined with stochastic methods, which will be discussed in

the next section, to solve OC problems for systems with uncertainties.

2.4 Numerical Methods for Stochastic Differential Equations

The goal of the research presented in this dissertation is to numerically solve

stochastic OC problems, or equivalently trajectory optimization problems, with un-

certainties on the states, constraints, or both. The material presented thus far applies

to deterministic problems. That is to say that the state of the system is perfectly mod-

eled by differential dynamic equations or measurements of the system are certain. In

reality, there are a multitude of uncertainties to cope with in trajectory optimization

problems such as noisy measurements, uncertainties in system models, uncertainties

in obstacle locations, random disturbances such as wind gusts, and so on. The pres-

ence of these uncertainties makes the problem more challenging, but does not make

the methods described for solving OC problems invalid. Indeed, the aforementioned

methods can be combined with additional methods to address randomness. In this

section, brief descriptions of concepts related to the solution of stochastic problems

are presented. The discussion will lead to Generalized Polynomial Chaos methods

that when combined with deterministic methods provides a powerful tool for solving

stochastic OC problems.
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2.4.1 Survey of Stochastic Methods.

Solving nonlinear OC problems is very difficult and the literature is especially

sparse on the topic of nonlinear stochastic OC [22]. Many nonlinear OC techniques

addressing problems where systems are subject to uncertainties (noise), i.e. stochas-

tic OC problems, attempt to linearize the systems and make simplifying assumptions

about the noise. Several well-developed tools become available by considering linear

systems with additive white (Gaussian) noise. Linear filtering techniques enable sep-

aration of noise from the signal of interest, for example measurement of system states

or rejection of noise in the plant model, by minimizing the mean-square estimation

error. Wiener filters (frequency domain) [15], and Kalman filters [51,52] (state-space

domain) provide such estimates. H∞ estimation provides another method for esti-

mating system states by minimizing the infinity-norm of the gain between disturbance

inputs and estimation error [20]. The resulting state estimates can then be used as

inputs to LQR controllers. H2 control is similar to the LQR, but whereas the LQR is

not a stochastic control algorithm, the H2 controller rejects noise and minimizes the

closed-loop system 2-norm. Linear filtering and estimation techniques work well for a

wide range of engineering problems, but filtering applied to nonlinear systems is much

more difficult since state estimation and control can not be separated from each other,

noise rejection, state estimation, and control objectives compete with each other, and

a given input probability distribution, Gaussian for example, generally does not map

to the same distribution in the output [31, 46]. That said, there are effective non-

linear filtering techniques available, such as particle filters, that work quite well but

may be difficult to implement. A survey of nonlinear filtering techniques is presented

in [18]. For these reasons, other approaches are needed to solve the general nonlinear

stochastic OC problem.

Representative nonlinear stochastic control methods based on DP, which are fun-
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damentally sequential decision-making algorithms, are presented in [56], [22] and [73].

Reference [56] discretizes the continuous state dynamics using Markov Chains, which

are random process where the state of the system at time step k + 1 only depends

on the state of the system at step k. The key element in the Markov structure is

definition of a transition model, which is stated as: given the system state xk = s at

time step k, the probability that the system will reach state xk+1 = s′ when control

uk is applied is P (s, u, s′) [74]. Written in another way, the transition probability is:

Ps,s′(uk) = Prob{xk+1 = s′|xk = s, uk} (2.99)

Kushner states that minimizing a DP cost functional using the Markov chain repre-

sentation of the stochastic processes results in optimal solutions that are good approx-

imations to the original problem. Rogers presents a slightly different DP approach,

again using Markov chains, where “pathwise” deterministic optimization is conducted

on many randomly sampled trajectories to find an approximate solution. He notes

that this is a novel approach in solving stochastic OC problems, but numerical im-

plementation needs further study [73]. The difficulties of applying these DP-based

methods are that it is not clear how to define the transition probabilities based on

the randomness in the OC problem and algorithms for actually implementing these

methods are not clearly stated.

Reference [22] uses a “backward search algorithm” that is based on Bellman’s prin-

ciple of optimality to generate global control solutions to stochastic optimal control

problems with fixed-state terminal conditions and state and/or control constraints

that “can handle strongly nonlinear and non-smooth systems, can include various

state and control constraints and leads to global solutions.” Crespo and Sun’s method

can be summarized as:

• Formulate the SDE using random inputs modeled as independent Wiener pro-
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cesses, which are also known as Brownian motion, and is a method of modeling

uncertainty as a differential equation by passing white Gaussian noise through

an integrator [15, 63].

• Specify the cost as the expectation of a Bolza-type functional.

• Apply Bellman’s principle of optimality.

• Implement a backward search algorithm beginning at the terminal boundary

conditions and searching backward through the space and time domains to find

the optimal solution.

Through three examples, Crespo concluded that the “method leads to controls with

excellent performance” and indicated that improvements and further studies are

needed to solve higher-dimensional problems and “rigorous study of convergence and

stability of the method has yet to be done” [22].

Girardeau compared two sample-based stochastic OC schemes in [43]: a scenario

tree method and particle method. He considered a continuous-time finite horizon

problem of controlling a dynamical system perturbed by exogenous noise, assumed

to be uniformly distributed, using a mean squared error (MSE) cost function. Both

methods involve discretization of the state space, time domain, constraints, and cost

function and essentially become large sets of deterministic problems. In the scenario

tree method, he defined a scenario as a set of sampled noise values at each time

step in the discrete time domain. The method basically solves the discrete problem

using a DP approach that uses knowledge of all previous state, control, and noise

values to sequentially determine the state feedback control function at the current

state and sampled noise value that minimizes the expected cost at future points in

time. The control solution is then used to propagate the state to the next time point

through the discretized dynamics. A numerical example indicates that the method

is computationally expensive since numerical integration of the MSE cost function
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is required at each time step and that as the time horizon increases, the number

of scenarios needed to achieve an accurate solution exponentially increases. The

particle method proposed is a mix of stochastic and dynamic programming where

the necessary optimality conditions are formulated using variational techniques, i.e.

a costate vector is generated, and then solved using sampling. The solution is found

using gradient search methods where the sample grid adaptively discretizes portions of

the state space that are most visited by the resulting deterministic optimal solutions.

Girardeau showed that this method does not have the same exponential growth of

scenarios as in the scenario tree method, but becomes unsolvable as the dimension of

the state space increases. While these methods seem to be able to solve a nonlinear

stochastic OC problem, the formulations and examples do not include fixed final

states, thus it’s not evident how they could be applied or adapted to solve a broad

range of OC problems.

It was noted in section 2.3.3.2 that solving deterministic OC problems using the

GPM generates solutions that well approximate the numerical solution to the HBVP.

If OC problems are thought of as of a system of ODEs, as in the indirect HBVP for-

mulation, then tools for solving SDEs may be available which can be combined with

the GPM to solve stochastic OC problems. As will be shown later, solving SDEs will

ultimately depend on repeated application of deterministic ODE solvers and, to fore-

shadow, there may be spectral, or more specifically pseudospectral, representations

of stochastic solutions that are accurate, computationally efficient, and easy to use.

A survey of solution methods for SDEs, specifically Monte-Carlo Simulation, Pertur-

bation Methods, Moment Equations, Operator Methods, and Generalized Polynomial

Chaos, are summarized in [87] and [88] and presented with greater detail in [39]. The

discussion below is a paraphrased synthesis of the information in these reference with

complementary references inserted as appropriate.
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The most common technique for solving SDEs is the brute force Monte-Carlo Sim-

ulation (MCS) method. The MCS method generates random samples of a stochastic

variable taken from an assumed probability distribution function (PDF). Each ran-

dom sample is subsequently inserted into the SDE, making it a deterministic problem

that can be solved using deterministic differential equation solution methods, such

as those discussed in section 2.3, or existing ODE and PDE numerical solvers in

Matlab!. A set, or ensemble, of solutions is collected from which the statistical

information, such as expected value (mean), variance, and covariance, is calculated.

Convergence is checked at some arbitrary interval, after every 500 or 1000 samples

for example, and is said to have been achieved when the change in expected value be-

tween successive intervals is below a desired tolerance. The solution to the problem is

the combination of expected value, the most likely solution to the stochastic problem,

and second moment variance and covariance information, which characterizes the dis-

tribution of the solution by showing how much the solution varies from the mean as a

function of uncertain parameters and correlations between solution variables, respec-

tively. The MCS method is relatively easy to implement using existing deterministic

differential equation solvers, will eventually converge to a solution regardless of the

PDF of the process, and is not limited by the amount of uncertainty in the variable.

However, it’s well known that the mean converges slowly, on the order of 1√
k
, where

k is the number of realizations (samples) of the random variable, which implies high

computational burden, especially in problems with multiple random variables. Even

though the MCS is computationally burdensome, it is often capable of quantifying

effects of uncertainty in problems were other methods seem to fail and is a valuable

method in verifying results obtained using other methods [39].

Perturbation Methods, Moment Equations, and Operator Methods offer alterna-

tives to solving SDEs, but will not be used in this research and are only mentioned
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here for the sake of completeness. Perturbation Methods expand the field of the

random variables about their mean values using truncated Taylor series expansions.

These methods are limited to SDEs where the uncertainties are generally less than

10 percent and become extremely complicated for systems where there are more than

two random variables. Moment Equation methods attempt to determine the moments

of the random solution directly from the stated SDE problem. These methods are

difficult to use since moments beyond the second moment (variance and covariance)

are required but most likely unknown. Operator Methods attempt to express the in-

verse of the stochastic operator of the SDE as a Neumann series. Unfortunately, this

method is also limited to problems with small uncertainties and are not very useful.

Babuska and Chatzipantelidis present formulation, analysis, and numerical examples

of perturbation and operator methods applied to solve elliptic PDEs in [3].

Another powerful technique is the Generalized Polynomial Chaos (gPC) method.

The gPC is a spectral approximation of a stochastic process used to solve SDEs,

analogous to the deterministic spectral methods described in section 2.3.3, where

solutions to SDEs are expressed as expansions of the random parameters using or-

thogonal polynomials. As with deterministic PSMs, there are both Galerkin and

collocation implementations of the gPC. Research, which will be specifically cited

later, has shown that the best choice of the orthogonal basis polynomials depends

on the type of PDF describing the random inputs and that spectral convergence is

achieved by selecting the appropriate basis set. While both gPC implementations

are spectrally accurate and demonstrate “quick convergence,” the added benefit of

the collocation method, similar to Monte-Carlo Simulation, is that it is also fairly

simple to implement since it only requires repeated deterministic solutions at a set of

collocation points [87]. The gPC will be a central concept in this research and will

be presented more thoroughly in the next subsection.
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2.4.2 Generalized Polynomial Chaos.

In 1938 Norbert Wiener introduced, for what may be the first time, a “Ho-

mogeneous Chaos” which used Hermite polynomials to approximate Gaussian pro-

cesses [83]. Xiu summarizes Wiener’s work in [91] and cites references to theorems

that have shown that the Hermite Chaos converges for any second-order random pro-

cess, which are processes with finite second moments, and in fact, converges spectrally

for Gaussian processes due to the fact that the Hermite weighting function is the same

as that of the Gaussian PDF. Thus, Wiener’s Homogeneous Chaos, known also as

Wiener’s Chaos or the Hermite Chaos, enables approximation of second-order ran-

dom processes, which are representative of many physical systems, using orthogonal

polynomials.

Building on cited work of Askey, who extended Wiener’s Homogeneous chaos by

linking other orthogonal polynomial bases and statistical distributions by matching

weighting functions, Xiu presented a method for solving SDEs based on Galerkin

projections that takes advantage of these correspondences [91]. Through numerical

experimentation on an ODE where an exact solution is available, he demonstrated

spectral convergence of the errors when these correspondences were followed. Xiu

found that convergence was still obtained, but substantially slower, when the polyno-

mial bases were not chosen to match the probability distribution. This generalization

of Wiener’s Hermite Chaos is known as the gPC and a table with the polynomial

correlations to probability distributions is given in the table below.

There are two forms of gPC: Galerkin and collocation. The Galerkin form is

described in [86], [87], and [91] and the procedure summarized below is a paraphrase

from these references.

Consider the generic stochastic differential equation, assuming that boundary con-
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Table 2.3. Correlation between probability density functions and orthogonal polynomial
bases [88]

Distribution Type Random Variable Distribution Polynomial Basis Domain

Continuous Gaussian Hermite [−∞,∞]
Gamma Laguerre [0,∞]
Uniform Legendre [a, b]

Discrete Poisson Charlier 0, 1, 2, ...
Binomial Krawtchouk 0, 1, ..., N

Negative Binomial Meixner 0, 1, 2, ...
Hypergeometric Hahn 0, 1, ..., N

ditions are specified:

L(x, t, θ; u) = f(x, t; θ) (2.100)

where u = u(x, t; θ) is the solution and f(x, t; θ) is the source term. The operator L

is a differentiation operator which can generally involve time and space derivatives

resulting in a generally nonlinear differential equation that can either be an ODE

or PDE depending on the construction of the operator. The random parameter, θ,

represents uncertainty in the system which can be present in the boundary conditions,

initial conditions, physical properties of the system, etc. The presence of uncertainty

causes the solution, u, to be a random process, which can be spectrally expanded as

a polynomial chaos as:

u(x, t; θ) =
Pc
∑

i=0

ui(x, t)Φ
c
i (ζ(θ))) (2.101)

where ζ(θ) is a random variable (RV) that is a function of the random input θ.

Notice that the sum has been truncated at the P th
c term and the “c” subscript is

used to indicate “chaos” to differentiate this symbol from a previously used one.

The set of basis functions, {Φc
i}, are orthogonal polynomials chosen based on the
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assumed distribution of the random variable ζ(·) as described in Table 2.3. Again,

the superscript “c” is used to differentiate the “chaos” expansion basis functions

from a similar formerly used symbol. The number of expansion terms, (Pc + 1), is

determined by the dimension, n, of the random variable ζ and the highest order, p,

of the polynomials {Φc
i} as:

(Pc + 1) =
(n+ p)!

n!p!
(2.102)

Substituting (2.101) into (2.100) yields:

L
(

x, t, θ;
Pc
∑

i=0

uiΦ
c
i

)

= f(x, t; θ) (2.103)

To minimize the approximation error, a Galerkin projection is used to project

(2.103) onto each orthogonal polynomial basis element, {Φc
i}, using the following

inner product definition:

〈L
(

x, t, θ;
Pc
∑

i=0

uiΦ
c
i

)

,Φc
k〉 = 〈f,Φc

k〉 (k = 0, 1, ..., Pc) (2.104)

References [86], [87], and [91] show that defining the inner product this way ensures

minimum approximation error. The result of the projection is a set of (Pc + 1)

coupled equations for each ui(x, t), where i = 0, 1, . . . , Pc, that are deterministic since

the uncertainty has been transferred into the polynomial bases. However, the inner

products in (2.104) generate (Pc +1) integral equations which are solved numerically

using quadrature rules. Therefore, the time domain and the space of x need to

be discretized so that deterministic methods to solve the integral equations can be

used. It should be obvious that solving SDEs using the Galerkin form of the gPC

becomes increasingly difficult as the number of states increases. Further development

of Galerkin gPC methods used to solve elliptic-type stochastic PDEs, most using
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Finite Element Methods (FEM) for discretization of the physical space, can be found

in [5, 23, 34, 40, 90]. A solution method for hyperbolic stochastic PDEs using the

Galerkin gPC method, with application to a wave equation example, is presented

in [45].

The Galerkin formulation of the gPC has been discussed and now the collocation

form will be presented. As has been stated, the gPC is a spectral approximation

of stochastic process, which is analogous to the discussion of spectral methods in

section 2.3.3. Detailed development of the collocation type gPC for solving stochastic

PDEs and ODEs can be found in [4, 25, 89] and rigorous convergence analysis is

performed in [4, 66]. Pulch adapts the collocation gPC to solve BVPs in [70], noting

that other numerical methods like shooting, finite difference, and spectral expansion

methods described in section 2.3 have analogous applications to stochastic ODEs. The

focus here will be placed on the approach formulated to solve ODEs and Differential

Algebraic Equation (DAE)s, which are the most commonly seen types of equations

in OC problems and the types addressed in this research effort. More details are

presented than in the Galerkin case since the collocation formulation will be used in

this research. The development of the key equations of the collocation gPC solution

process are paraphrased from [86]. The author’s notation has been preserved as much

as possible since it appears to be fairly standard in the literature. The step-by-step

procedure combining the GPM and collocation form of the gPC used in this research

will be concisely presented in Chapter III and application of the algorithm to two

types of optimization problems, an OC problem with state uncertainties and a TO

problem with uncertainties effecting the cost functional, will be presented in Chapters

IV and V, respectively.

The collocation form gPC algorithm development will consider a general system
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of DAEs in the following form:















F (t,y,y′, ...,y(l),p) = 0

g(t0,y(t0), ...,y(l)(t0),p) = 0

t ∈ (t0, T ] (2.105)

where the key variables are:

• State variables: y = (y1, ..., yJ) ∈ RJ

• Stochastic input parameters (random variables): p = (p1, ..., pN) ∈ RN

• Outputs or observables: z = G(y) = (z1, ..., zK) ∈ RK . Generally speaking,

the outputs or observables can be the states or some function of the states

that defines quantities of interest. When applied specifically to optimization

problems, the observables can be the states, costates, controls, cost, terminal

time (free-final-time problem), Hamiltonian, and so on.

Additionally, its necessary to define the probabilistic structure. The vector p is

defined as an N-variate random vector whose elements are assumed to be independent

of each other. If the random elements in p are not independent, then a transformation,

such as the Karhunen-Loève decomposition or Rosenblatt transformation, should first

be applied resulting in a set of uncorrelated RVs that are assumed to be independent

[11, 39, 87, 89, 92]. Furthermore, assume that the probability space is defined by the

tuple (Ω,A,P), where the space of all possible basic outcomes is Ω, is equipped

with σ-algebra A, which can be thought of as the space of possible events that can

be derived from Ω, and probability measure P [40]. Now define key probabilistic

variables in the gPC collocation development:

• PDF: ρi is the PDF of the random variable pi(ω), for i = 1, ..., N and ω ∈ Ω.
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Because the elements of p are independent, the joint PDF is given by:

ρ(p) =
N
∏

i=1

ρi(pi) (2.106)

• Finite domain of ρi: Γi ≡ pi(Ω) transforms the infinite domain Ω to the finite

domain Γ which are intervals in R, for i = 1, ..., N . The total finite domain is

defined as:

Γ ≡
N
∏

i=1

Γi ⊂ R
N (2.107)

One goal of the gPC expansion is to approximate the RVs in p using orthogonal

polynomials. The one-dimensional orthogonal polynomial space, W i,di, of highest

degree, di, is defined by:

W i,di ≡ {v : Γi → R : v ∈ span{φc
m(pi)}

di
m=0} (i = 1, ..., N) (2.108)

The one-dimensional polynomial basis set, {φc
m(pi)}, which has di + 1 basis elements

and chosen according to Table 2.3, satisfies the following orthogonality conditions:

∫

Γi

ρi(pi)φ
c
m(pi)φ

c
n(pi)dpi =

[
∫

Γi

ρiφ
c2

mdpi

]

δmn = h2
mδm,n (2.109)

where the polynomial basis elements are made orthonormal with respect to the PDF

by applying appropriate scaling factors such that h2
m = 1 for all m [87].

The N-variate space of orthogonal polynomials, W Pc

N , of total degree of at most

Pc, is constructed by taking the tensor product, i.e. all possible combinations, of the

N one-dimensional orthogonal polynomial bases, written as:

W Pc

N ≡
⊗

|d|≤Pc

W i,di (2.110)

73



where the relationship between di and Pc is given by:

|d| =
N
∑

i=1

di ≤ Pc (2.111)

and satisfy the orthogonality conditions:

∫

Γ

Φc
m(p)Φ

c
n(p)ρ(p)dp ≡ E [Φc

m(p)Φ
c
n(p)] = δmn (2.112)

The effect of (2.111) is to select a subset of basis elements from the tensor product

space defined by (2.110) in order to reduce computational burden, however the entire

set of basis elements resulting from the tensor product can be used [87], in which case

M is equal to the total number of basis elements resulting from the tensor product

of the one-dimensional basis sets.

Now the approximation of the output, z, as a function of the random parameters,

p, can be written as:

P
Pc

N z ≡ zPc

N (p) =
M
∑

m=1

ẑmΦ
c
m(p) (2.113)

where:

M =

(

N + Pc

N

)

(2.114)

or is the total number of tensor product elements if the entire set of basis elements are

being used. The projection operator in (2.113) , PPc

N , projects the discrete probability

space Γ onto the polynomial space W Pc

N . The coefficients, ẑm, are determined by:

ẑm = E [z(p)Φc
m(p)] =

∫

Γ

z(p)Φc
m(p)ρ(p)dp (m = 1, ...,M) (2.115)

The key element in the gPC collocation method is to approximate the integral

in (2.115) using a Gaussian quadrature rule. To apply quadrature, a set of colloca-
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tion points must be chosen and associated quadrature weights calculated. For each

random dimension, Γi, i = 1, . . . , N , qi collocation nodes and weights are chosen to

correspond with the polynomial representation described in Table 2.3 and determined

by information given in Table 2.2. The N-dimensional grid of Q collocation nodes

and weights is obtained by taking the tensor product of the one-dimensional node and

weight sets. Alternatively, a sparse grid can be generated to reduce the total number

of tensor product nodes while providing accurate integral approximation using the

Smolyak algorithm, first published in [77] and included, along with other sparse grid

schemes, in [38]. In general, a tensor product grid works well for low-dimensional

problems, but suffers the curse of dimensionality as N gets larger (N > 5) making

sparse girds a better choice [4, 87]. The following figure shows representative two-

dimensional (N = 2) collocation grids generated using both schemes. The tensor

product grid was generated using 20 LG points in each dimension resulting in a total

of Q = 400 collocation points and quadrature weights. The sparse grid was generated

using a Matlab!routine [10,11] that generated nodes and weights associated with a

fifth-order quadrature rule, resulting in Q = 290 quadrature points and weights. The

Figure 2.1. Collocation grids used in gPC collocation expansion. Left: Two-dimensional
(N = 2) tensor product collocation grid with 20 LG points (qi = 20) in each dimension.
Right: Sparse collocation grid in two-dimensions based on 5th-order quadrature rule.
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collocation approximation to (2.115) based on the quadrature rule chosen is given by:

ẑm =
Q
∑

j=1

z(pj)Φ
c
m(pj)αj; (m = 1, ...,M) (2.116)

where pj denotes the jth collocation node of the random vector pj = (p1,j, ..., pN,j)

and αj denotes the associated quadrature weight, thus defining the set of collocation

nodes and weights, {pj ,αj}Qj=1. Note that z(pj) is the deterministic solution using

the jth sample of the random vector. This gPC formulation is the basis of a general

procedure which will be presented in Chapter III.

It can be seen that one advantage of the gPC collocation method, elegantly stated

in [62], which also presents the gPC collocation algorithm development, is:

...while the standard Galerkin approach to Polynomial Chaos requires
multi-dimensional summations over the stochastic basis functions, the
stochastic collocation method enables to collapse those summations to
a one-dimensional summation only.

In other words, a one-dimensional summation replaces multi-dimensional summations

used in the Galerkin method to numerically approximate the integrals resulting from

the inner products. Mathelin demonstrates this through formulation of a solution to

a one-dimensional nozzle flow (fluids) problem where the Galerkin method results in

a nine-dimensional summation, or more depending on boundary conditions. Other

advantages to the gPC collocation method, as stated in [4, 87] are:

• The gPC collocation leads to solution of uncoupled deterministic problems

where the gPC expansion is a post-processing step after the deterministic solu-

tions at the collocation nodes have been found.

• The gPC can handle unbounded random variables, for example Gaussian or

exponentially distributed random variables.
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• Like the Galerkin form of the gPC, it is spectrally accurate, i.e. the algorithm

gives exponential convergence.

The gPC algorithms have been applied to solve SDEs in many engineering disci-

plines such as: analysis of nonlinear integrated circuit response [80], various types of

fluids problems [45, 57, 58, 62, 92], heat transfer [41, 82, 93], and others referred to by

the authors of these references. Applications of the gPC methods applied to stochas-

tic OC problems are rare. One such application is found in [11] where a nonlinear

parabolic PDE-based OC problem is considered using “multi-grid” physical domain

discretization. The difference between the work in this reference and the research

developed in this document is that the former is not using a spectral method to solve

the deterministic problems at the discretized random sample points. No references

containing work similar to that described in this document have been found thus far.

2.4.3 Numerical Methods for Stochastic Differential Equations Sum-

mary.

This section began with a survey of commonly used techniques to solve stochastic

optimal control problems. The discussion was then expanded to consider methods

used to solve stochastic differential equations, which may be adapted to solve stochas-

tic optimal control problems. Specifically, Generalized Polynomial Chaos methods

were presented since they provide spectral representations of the random space that

are analogous to the spectral representations of deterministic problems discussed ear-

lier in the document and provide accurate approximations to the solution. Two forms

of the Generalized Polynomial Chaos were summarized: Galerkin and Collocation.

Again, parallels between the deterministic and stochastic versions of these algorithms

are obvious, where the collocation approach is easier to implement while providing

accuracy that is similar to the Galerkin method. The abbreviated version of the
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collocation method was given at the end of the section, which will be adapted and

applied to a sample stochastic optimal control problem in the next chapter.

2.5 Related Concepts Summary

This chapter began with a brief exposition on the historical evolution of OC

theory. The general formulation of a continuous OC problem was posed along with

the traditional solution technique applying CV theory and the PMP to transform

the problem into an HBVP. Recognizing that analytically solving the resulting set

of coupled nonlinear differential equations defining first-order optimality conditions

may be impossible, the formulation provided motivation for discussing indirect and

direct numerical solution methods.

Indirect methods seek to numerically solve the system of ODEs comprising the

HBVP. As such, discussion of indirect methods presented focused primarily on numer-

ical integration rules as implemented in the time-marching, shooting, and collocation

methods. Direct methods, on the other hand, avoid analytical derivation of the nec-

essary conditions for optimality like those in the HBVP by transcribing the original

problem into a parameter optimization problem and applying NLP techniques. Basic

concepts of formulating an NLP problem were presented and how direct shooting and

collocation methods are cast as NLP problems.

Collocation and NLP concepts were then put together to form the basis for PSMs,

which can be applied to both indirect HBVP and the direct NLP problem formula-

tions. After general discussion of spectral methods highlighting basic concepts and

available forms, particular attention was paid to the direct Gauss Pseudospectral

Method where equations transcribing the optimal control problem to nonlinear pro-

gramming problem, Karush-Kuhn-Tucker optimality conditions, equivalence of GPM

and HBVP solutions, and GPM implementation in GPOPS were discussed.
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Emphasis was then shifted to address stochastic solution methods. A summary

of commonly used techniques, most notably MCS, to quantify uncertainty in SDEs

ultimately led to presentation of the collocation form of the gPC, which is a spectral

method analogous to the deterministic spectral methods presented in the chapter.

The gPC uses orthogonal polynomial bases, chosen based on correlation between

weighting functions of the assumed PDFs of the uncertain parameters and the poly-

nomial bases, to approximate SDE solutions as functions of the uncertain parame-

ters. The collocation form applies deterministic solution techniques at the collocation

points to generate a set of deterministic solutions used in stochastic computations.

Therefore, it seems possible to use GPOPS as the deterministic solver implement-

ing the GPM to provide spectrally accurate approximations to OC problems, which

have been shown to be equivalent to numerical solutions of the CV-based HBVP, in

the gPC construct to extend the method to be applicable to stochastic optimization

problems. Combining the GPM and gPC spectral methods into a hybrid algorithm

will be presented in the next chapter.
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III. Hybrid GPM-gPC Algorithm

The focus of this research is to determine if a method that integrates the GPM

discussed in section 2.3.3.2 into the collocation form of the gPC discussed in

section 2.4.2 is capable of solving nonlinear optimization problems by quantifying

the effects random parameters have on the solutions. Using the GPM numerical

solution package GPOPS in place of the differential equation solvers traditionally

used in the gPC construct will provide a set of minimum cost numerical solutions

to the sampled optimization problems that satisfy boundary, path, and bounded

state and control constraints. Since these solutions are spectrally accurate and have

been shown to be equivalent to numerical solutions of the HBVP, they are the best

numerical approximations available to the true solution and are suitable for stochastic

computations.

The algorithm presented in this chapter, as shown in figure 3.1 and discussed in

the process steps, is an adaptation of the gPC collocation algorithm published in [86].

The gPC algorithm presented in the reference was originally written to solve SDEs

by applying IVP and BVP differential equation routines to generate the determin-

istic solution set that is used in stochastic computations. Xiu’s algorithm has been

adapted to form a hybrid algorithm that is applicable to OC and TO problems by

using GPOPS in place of the IVP and BVP solvers [86]. The remainder of this docu-

ment will be focused on application of the hybrid algorithm combining the GPM and

gPC collocation methods. For convenience, future use of the gPC abbreviation refers

to the collocation form of the gPC and the term hybrid algorithm refers to the col-

location form of the gPC where the GPM tool, GPOPS, is used as the deterministic

OC solver in the gPC collocation construct. The hybrid algorithm is discussed in the

following five steps.
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Step #1: Choose a set of collocation nodes and quadrature weights, {pj,αj}Qj=1, in

the finite probability space, Γ.

Since the hybrid algorithm will generate a spectral approximation of the solution

to the stochastic problem, points that match both the quadrature rule evaluating

the expansion coefficients given by (2.115) and the polynomial basis elements Φm

should be used. For example, if Hermite orthogonal polynomial bases are chosen to

approximate a Gaussian distribution as suggested in [87], [88], and Table 2.3, then

Gauss-Hermite quadrature is an appropriate integration rule and will be most ac-

curate using Gauss-Hermite nodes and weights. Furthermore, the Gauss-Hermite

quadrature nodes will define the finite random domain Γ. The Gaussian distribution

is supported on Ω = (−∞,∞) with an infinite number of possible realizations, but

when the quadrature points are chosen, Γ will be supported on some bounded region

in R with a finite number of points. The grid of Q points is constructed by choosing qi

collocation nodes and quadrature weights in each random domain, Γi, for i = 1, . . . , N ,

and then taking the tensor product of the N individual sets. As mentioned in Chap-

ter II, there is an abundance of Matlab!functions available for download on the

MathWorks
TM

website to generate quadrature nodes and weights. Descriptions of

other quadrature point sets and rules can be found in [14], [33], and [81]. Each node

in the grid is used as an input to the governing stochastic OC problem equations

resulting in a set of deterministic problems that are solved in Step #2 with existing

numerical tools like GPOPS.

Step #2: Using each of the Q sample points, pj , solve the set of deterministic OC

problems using GPOPS and build the observables array z = G(x), consisting of state

trajectories, control solutions, and cost values as well as any other variables of interest

such as costate trajectories, Hamiltonain values, terminal time, or any other variables
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available in the GPOPS solution data.

Using the GPM to solve the Q deterministic OC problems at the collocation

points is one reason why this hybrid algorithm is unique. Reference [86] states that

any deterministic solver can be used, which for the author’s purposes was an IVP

solver. Matlab!provides effective solvers, such as ODE45 for IVPs and BVP4c for

BVPs, that could also be used to solve the deterministic set of HBVP differential

equations at the collocation points. However, using the direct GPM method coded in

the GPOPS software provides spectrally accurate solutions to the deterministic sam-

pled problems, if they exist, that are equivalent to numerical solutions of the HBVP

differential equations, satisfy optimality conditions, minimize the performance index,

and satisfy the boundary conditions while avoiding complexities of explicitly deriving

and solving the HBVP differential equations mentioned in sections 2.2.2 and 2.3.1.

Therefore, GPOPS, or similar PSM solvers, provides the best possible approximations

to the Q deterministic problems whose solutions are used in Step #3 to calculate

the expansion coefficients.

Step #3: Evaluate the expansion coefficients using (2.116), which is restated below:

ẑm =
Q
∑

j=1

z(pj)Φ
c
m(pj)αj; (m = 1, ...,M) (3.1)

These expansion coefficients contain the information necessary to approximate the

statistical properties of the solution constructed in Step #4.

Step #4: Build the output approximation function using (2.113), which is restated

below:

P
Pc

N z ≡ zPc

N (p) =
M
∑

m=1

ẑmΦ
c
m(p) (3.2)
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The solution to the stochastic problem given by (3.2) is essentially a set of distri-

bution functions that estimate the outputs (observables) as functions of the random

inputs, the statistics of which are determined in Step #5.

Step #5: Evaluate the statistics of the approximate solution.

The statistical information about the solution is the desired output and is easily

calculated using the expansion coefficients. Expected value, variance, and covariance

functions describe the most likely solution to the stochastic problem, characterizes

how the solution varies with random inputs, and describes the dependencies between

the outputs, respectively. Equations for these properties are derived in [87] and are

stated below.

The expected value (E) is:

E(z(t)) ≈ E(zPN(t)) =

∫

[

M
∑

m=1

ẑm(t)Φm(p)

]

ρ(p)dp = ẑ1(t) (3.3)

The variance (var) is:

var [z(t)] ≈
M
∑

m=2

[

ẑ2m(t)
]

(3.4)

The covariance (cov) is:

cov [zi(t), zj(t)] ≈
M
∑

m=2

[ẑi,m(t)ẑj,m(t)] (3.5)

This process was implemented in Matlab!and used to investigate an optimal

control problem with state uncertainties in Chapter IV and a trajectory optimiza-

tion problem with constraint uncertainties in Chapter V with the following research

questions in mind.

• How can an OC or TO problem with uncertain parameters be formulated so
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that it can be solved using the hybrid GPM-gPC algorithm?

• Can the algorithm be applied to problems with various types of boundary con-

ditions and constraints?

• Can the algorithm be applied to problems where uncertain parameters effect

different equations?

• How do the hybrid algorithm solutions compare with MCS solutions?

• Can the hybrid algorithm solve problems where the uncertain parameters do

not all have the same assumed PDF and thus use a mix of polynomial bases?

• Can the hybrid algorithm be applied to real-world scenarios to provide useful

information to the users?

This concise chapter has served as a bridge between the GPM and gPC theoretical

concepts presented in sections 2.3.3.2 and 2.4.2 and their implementation into the

hybrid algorithm shown in Figure 3.1 and discussed in the step-by-step process listed.

Several research questions have also been posed that will be investigated by applying

the hybrid GPM-gPC algorithm to two types of optimization problems in the following

two chapters.
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Step #3:  Calculate expansion coeff's

ẑm =
Q
∑

j=1

z(pj )Φm(pj )αj

(m = 1, . . . ,M)

Step #4:  Generate output approximation

zPN (p) =
M
∑

m=1

ẑmΦm(p)

Step #1: Pick qi collocation points and 
quadrature weights in each Γi (i=1,...,N) 
and construct tensor grid {pj ,αj}

Q
j=1

Step #5: Calculate statistics of output 
approximations.

var [z(t)] ≈
M
∑

m=2

[

ẑ
2

m(t)
]

E(z(t)) = ẑ1(t) ;

cov [zi(t), zj(t)] ≈
M
∑

m=2

[ẑi,m(t)ẑj,m(t)]

Step #2: Run deterministic GPOPS OC 
solver using pj's as inputs, giving Q sol'n 
sets, and build observables array:
z(pj) = [xj(t;pj),uj(t;pj), tf , Jj(xj ,uj)]

T

(j = 1, ..., Q)

Figure 3.1. Hybrid algorithm combining GPM and gPC methods.
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IV. Optimal Control Problem

In this chapter, the hybrid numerical algorithm combining the GPM and gPC

methods outlined in Chapter III is applied to an OC problem that has nonlinear

dynamics and performance index with multiplicative uncertainties in the state equa-

tions. The objective of this problem is to demonstrate the hybrid algorithm’s ability

to quantify the effects uncertain parameters have on OC solutions by applying it to

a challenging nonlinear problem.

4.1 Problem Formulation

The OC concept demonstration problem is an adaptation of problem 5-2 in [54].

This deterministic baseline problem will be stated first in section 4.1.1 followed by

modifications that were used to create the stochastic problem variant described in

section 4.1.2. The stochastic problem is further developed following the gPC col-

location modeling in section 2.4.2 resulting in a formulation that can be solved by

applying the hybrid algorithm. The solution to the deterministic problem is included

with the hybrid algorithm results in section 4.2 to compare with the expected value

solution as a check that the hybrid algorithm solution is reasonable.

4.1.1 Deterministic Baseline Problem.

The deterministic baseline problem is stated as:

• Find u(t) ∈ R1 and x(t) ∈ R2 that minimizes the cost functional (J):

J =

∫ 1

0

1

2
[2x2

1(t) + x2
2(t) + u2(t)]dt (4.1)
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• subject to:

ẋ1(t) = x2(t) (4.2)

ẋ2(t) = −x1(t) + [1− x2
1(t)]x2(t) + u(t) (4.3)

• with boundary conditions:

x(0) = [0, 0]T (4.4)

x(1) = [1, 10]T

GPOPS automatically formats the problem to be in the form of (2.69) - (2.72) by

transforming t ∈ [0, 1] to τ ∈ [−1, 1] using (2.73). This is a nonlinear, continuous-

time, Lagrange-type OC problem without path and control constraints, and with

fixed final state and time. It can be verified that forming the HBVP as described

in section 2.2.2 results in a set of coupled ODEs that cannot be solved analytically,

making it well suited for direct numerical solution in GPOPS.

4.1.2 Stochastic Problem.

Uncertainty is incorporated by modifying the dynamics (4.2) as indicated by the

(→), with random input parameters A and B as follows:

x1(t) → x1(t) + Ax1(t) = (1 + A)x1(t) (4.5)

x2(t) → x2(t) + Bx2(t) = (1 + B)x2(t)
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resulting in the modified stochastic dynamics:

ẋ1(t) = x2(t) + Bx2(t) (4.6)

ẋ2(t) = −(x1(t) + Ax1(t)) + u(t)

+[1− (x1(t) + Ax1(t))
2](x2(t) + Bx2(t))

Inputs A and B are assumed to be independent Gaussian RVs and come from the

same distribution with zero mean, µ = 0, and standard deviation, σ, of 0.1. These

random inputs introduce uncertainties on the states transforming x(t), u(t), and J

into RVs. The cost functional (4.1), boundary conditions (4.4), and time domain

remain the same in the stochastic problem. It should be noted that the objective of

a stochastic OC problem is typically to find the control signal and state trajectories

that minimize the expected value of the cost functional, written as:

J = E

[
∫ tf

t0

1

2
(2x2

1(t) + x2
2(t) + u2(t))dt

]

(4.7)

In this case, quantification of the effects of uncertainties on x(t), u(t), and J(x, u)

solutions is sought since it is assumed that there is no way to control the uncertainties

or minimize their effects. So, the cost functional as written in (4.1) is used when

solving each of the Q sampled deterministic problems and the set of solutions is used

to construct gPC approximations as functions of the random inputs to assess the

effects of those uncertainties.

Continuing with the problem set-up, the following definitions are used following

the development in section 2.4.2:

• State variables: x = (x1, x2) ∈ R2 (J = n = 2)

• Stochastic input parameters (random variables): p = (A,B) ∈ R2

(N = 2).
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• Outputs or observables: the observables are chosen to be the state variables,

control, and cost values. z = (x1, x2, u, J) ∈ R4 (K = 4)

The PDFs (Gaussian) of A and B are denoted by ρ1(A) and ρ2(B). The joint

PDF is given by (2.106) as:

ρ(p) =
2
∏

i=1

ρi(pi) = ρ1(A)ρ2(B) (4.8)

The sample space, Ω, is (−∞,∞) × (−∞,∞), but choosing the distributions with

µA = µB = 0 and σA = σB = 0.1 results in A and B taking values in a 10σ window,

(−1, 1)× (−1, 1), with greater than 99.99% probability. Defining the distributions in

this way avoids non-existent OC problem solutions resulting from state cancellation

in the dynamics as A and B approach −1.

The collocation points define the finite sample space. Since Gaussian PDFs are

assumed, Hermite polynomial basis functions were chosen for the gPC expansions, as

suggested in [87], [88], and Table 2.3, and collocated at Gauss-Hermite quadrature

points. It’s important to note that the statistical version of Hermite polynomials is

used where the weighting function is exp[− (x−µ)2

2σ2 ] instead of the typical exp[−x2],

implying that the traditional Gauss-Hermite quadrature points should be scaled by
√
2σ2 and shifted by adding µ and the quadrature weights scaled by (

√
π)−1. Recall

there are q points in each random dimension calculated by finding the roots of the

qth Hermite polynomial, Hq, and scaled accordingly. For this sample problem, q1 and

q2 were chosen to be 21, resulting in Q = 441 collocation nodes shown in Fig. 4.1.

Figure 4.1 shows that the resulting finite probability space, Γ =
∏2

i=1 Γi, as given in

(2.107), is the tensor grid [−0.8, 0.8]× [−0.8, 8].

The one-dimensional polynomial spaces (2.108), were chosen to be represented by
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Figure 4.1. Finite domain, Γ1 × Γ2, defined by the tensor grid of 441 collocation points
used as random inputs A and B .

the following polynomial basis sets:

{φ1}5d1=0 = {H0, ..., H5} (4.9)

{φ2}5d2=0 = {H0, ..., H5}

where Hi denotes the Hermite polynomial of the ith order. Thus, the 2-dimensional

polynomial space, defined using the tensor product in (2.110), is:

W Pc

N ≡ {φ1}5d1=0

⊗

{φ2}5d2=0 (4.10)

Selecting the entire set of basis functions yields 36 total basis elements, where each

one-dimensional basis polynomial is fifth order and the order of the tensor product,

Pc, is 10. The number of basis elements was chosen to provide balance between

computational burden and lowest observed variances in the state approximations at

the terminal time, indicating satisfaction of specified terminal boundary conditions.
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4.2 Results

Results of applying the hybrid GPM-gPC algorithm to the OC demonstration

problem are presented in this section. Mean solutions and variances are shown for

the state variables, x1(t), x2(t), and control, u(t), as well as the covariances be-

tween these variables, and are compared to an MCS for verification. The variation of

J(x(t), u(t), t;A,B) with respect to the random inputs is also shown.

The MCS was accomplished by generating random samples of the stochastic vari-

ables, (A,B), taken from Gaussian distributions with µA = µB = 0 and σA = σB =

0.1 as specified in the problem formulation. Each sample pair was subsequently in-

serted into the stochastic dynamics equations (4.6), creating a set of deterministic

OC problems that were solved using GPOPS. The ensemble of solutions was used to

calculate expected values (mean) and variances of the state variables and control and

covariances between x1(t) and u(t), x2(t) and u(t), and x1(t) and x2(t). Convergence

was checked after every 500 samples and was achieved at 16, 500 samples when the

maximum change in expected values of the state trajectories from the previous inter-

val was below an arbitrarily chosen tolerance of 5 × 10−5. Expected value, variance,

and covariance properties of the hybrid algorithm solution are compared to MCS

results using the following Percent Difference (PD) equation:

PD = max

∣

∣

∣

∣

SMCS(t)− Salg(t)

(SMCS(t) + Salg(t))/2

∣

∣

∣

∣

× 100 (4.11)

where hybrid algorithm and MCS statistical quantities being compared, Salg and

SMCS, are the expected values, variances, or covariances as appropriate. This com-

parison metric was chosen over the typical percent error because both hybrid algo-

rithm and MCS results are approximations where fidelity can be increased, at the

expense of computational burden, by increasing the numbers of sample points or by
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Figure 4.2. Hybrid algorithm, MCS, and deterministic expected value estimates of
x1(t), x2(t), and u(t).

increasing the polynomial order, and thus neither can be assumed to be a theoretical

answer.

Figure 4.2 shows the mean solutions for x1(t), x2(t), and u(t), respectively. The

three curves on each of these plots show the hybrid algorithm expected value solution,

the MCS expected value solution, and the deterministic solution. The hybrid algo-

rithm expected value approximation for each state and control variable is given by

the first coefficient in each expansion as stated in (3.3). Bars indicating the standard

deviations are included to quantify how much the solution varies from the mean. The

solution to the deterministic OC problem, given by (4.1) - (4.4), or equivalently by

the modified dynamics (4.6) with A = B = 0, serves as another check of the mean so-

lution. Since the stochastic inputs are unbiased and zero mean, it was expected that

the hybrid algorithm mean solution would be close to the deterministic one, which is
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Figure 4.3. Hybrid algorithm and MCS variance estimates of x1(t), x2(t), and u(t).

indeed the case. This check was possible by virtue of the problem formulation and

may not be available in more general problems. These plots show that the hybrid

algorithm and MCS expected value results closely match each other as quantified

with PD calculations using (4.11). The PD in expected values of x1(t), x2(t), and

u(t) is 0.17%, 0.04%, and 0.02%, respectively. Both the hybrid algorithm and MCS

solutions also match the deterministic solution as expected, and the desired terminal

conditions x1(tf ) and x2(tf ) are satisfied.

Figure 4.3 shows the variances of the hybrid algorithm solutions of x1(t), x2(t),

and u(t), respectively, using (3.4). MCS results are also included for comparison.

These plots show close agreement between the hybrid algorithm and MCS variance

approximations with PD values of 0.17%, 1.236%, and 3.015% in variances of x1(t),

x2(t), and u(t), respectively. Desired terminal conditions, x1(tf ) and x2(tf ), are also

satisfied indicated by zero variances at the terminal time.
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Figure 4.4. Hybrid algorithm and MCS covariance estimates between x1(t) and u(t),
x2(t) and u(t), and x1(t) and x2(t).

Figure 4.4 shows the covariances between x1(t) and u(t), x2(t) and u(t), and x1(t)

and x2(t), respectively, calculated using (3.5). Once again, MCS results are included

for comparison. These plots further characterize the statistics of the solution by show-

ing correlations between x1(t) and u(t), x2(t) and u(t), and x1(t) and x2(t). Since the

dynamics in (4.6) are nonlinear and coupled in the state variables, it was expected

that the output distributions would be correlated, as indicated by the non-zero co-

variances. There are more noticeable differences in these results where the maximum

PD in covariances between x1(t) and u(t) and x2(t) and u(t) is approximately 14%

and 4.3% in the covariance between x1(t) and x2(t). Even with more pronounced

differences in the covariance estimates between the two methods, both sets of results

follow the same general trend.

Closer agreement between the hybrid algorithm and MCS expected value, vari-
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ance, and covariance estimates can be obtained by increasing the fidelity of the MCS.

Decreasing the convergence tolerance by an order of magnitude, to 5 × 10−6, yields

between 28% and 67% improvement as can be seen in Table 4.1. The goal of running

Table 4.1. Difference between hybrid algorithm and MCS results

16,500 Sample MCSa 74,500K Sample MCSb

S Max Difference PD Max Difference PD Change
(|SMCS − Salg|) (%) (|SMCS − Salg|) (%) (%)

Mean
x1(t) 1.30× 10−3 0.1703 7.88× 10−4 0.1058 −37.87
x2(t) 1.50× 10−3 0.0415 9.45× 10−4 0.0224 −45.93
u(t) 6.60× 10−3 0.02355 4.67× 10−3 0.0169 −28.36

Variance
x1(t) 3.20× 10−5 0.1742 4.40× 10−5 0.2396 37.54
x2(t) 2.16× 10−4 1.236 1.05× 10−4 0.4021 −67.47
u(t) 8.80× 10−3 3.015 3.32× 10−4 1.142 −62.12

Covariance
x1(t), u(t) 3.0× 10−3 13.56 1.03× 10−3 5.039 −62.84
x2(t), u(t) 3.6× 10−3 14.32 1.19× 10−3 5.203 −63.67
x1(t), x2(t) 7.74× 10−4 4.321 4.470× 10−4 2.396 −44.55

a MCS tolerance = 5× 10−5, 16.5K samples, 137.8 minutes processing
b MCS tolerance = 5× 10−6, 74.5K samples, 681.7 minutes processing

the second MCS was to gain insight into the cause of noticeable PD between the two

methods, particularly in the covariance approximations. If the PD values did not

change appreciably by increasing fidelity of the MCS, then it would be reasonable

to conclude the parameters of the hybrid algorithm, such as number of collocation

points and order of polynomial basis sets, would need to be adjusted to improve the

quality of the hybrid algorithm solution. Conversely, if the correlation improved, then

it could be concluded that the MCS convergence parameters could be better selected

to provide better comparison. Table 4.1 shows that decreasing the MCS convergence

tolerances by an order of magnitude significantly improved correlation with the hybrid

algorithm, with most noticeable improvement in the covariance approximations, but
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Figure 4.5. Hybrid algorithm cost approximation as function of uncertain inputs A and
B .

more than quadrupled the number of random solutions required and corresponding

processing time on an Apple MacBook Pro with a 2.2 gigahertz quad-core proces-

sor and 8 gigabytes of memory. Therefore, it’s apparent that the hybrid algorithm’s

polynomial approximation using 441 collocation points, fifth-order one-dimensional

polynomial bases, and 6.8 minutes of computation time yields results that are at least

equivalent to, and probably more accurate than, MCS solving 74, 500 sampled OC

problems.

Lastly, Figure 4.5 shows how the cost varies as a function of the random inputs.

This plot was generated using a tensor product set of test points A and B ranging from

−3σ to 3σ as inputs to the output approximation (3.2) of the cost. The surface plot

of the gPC cost values represents a probability-like distribution function. The lowest

cost is obtained when both A and B are less than zero. Conversely, the largest costs

result when the random inputs are both greater than zero. The surface shows how

the costs vary over the entire range. The star in the figure shows the hybrid algorithm

estimation of the expected cost, which is also approximately equal to the deterministic

cost. This plot is effective in visualizing the effects the uncertain parameters have
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on the OC solution. Since the cost is a functional of the states and control, thus

implicitly a functional of the uncertain parameters, increasing or decreasing cost

resulting from realizations of the random parameters gives an indication of overall

increase or decrease in magnitudes of the state and control vectors.

4.3 Summary

In this chapter, a nonlinear OC problem was considered where Gaussian random

parameters were introduced into the state equations. Following the gPC descrip-

tion in section 2.4.2, the problem was formulated in a form suitable for application

of the hybrid GPM-gPC algorithm presented in Chapter III. The output of the

algorithm is a set of polynomial approximation functions for x1(t;A,B), x2(t;A,B),

u(t;A,B), and J(x1(t;A,B), x2(t;A,B), u(t;A,B)) whose expected values, variances,

and covariances, are found using the expansion coefficients and describe the statistical

properties of the solution. Comparing the statistical properties determined by appli-

cation of the hybrid algorithm with the MCS results demonstrated that the hybrid

algorithm effectively quantifies the effects of uncertainty with comparable accuracy

while requiring dramatically fewer sample points and associated GPOPS determinis-

tic solutions and computation time. The next chapter will apply the hybrid algorithm

to another type of optimization problem, a trajectory optimization problem, that is

representative of a real-world mission planning scenario, a target application for this

research.
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V. Trajectory Optimization Problem

Atrajectory optimization problem, notionally sketched in Figure 5.1, is consid-

ered to demonstrate the ability of the hybrid GPM-gPC algorithm to quantify

the effects of uncertain parameters on an optimal trajectory solution. The scenario

was designed to represent an aircraft traveling to a desired target location through

an environment where there are potential risks of lethal engagements. The objective

was to find the optimal path in a two-dimensional space that takes a vehicle from an

initial position to a target location while minimizing the probability that it will be

killed by the threats whose locations are uncertain. It’s assumed that at some point

in time the center locations were perfectly known but have possibly moved in the

time between intelligence gathering and mission planning according to an assumed

probability distribution. The deterministic TO problem will be described first, which

will form the basis for the subsequently discussed stochastic problem.

5.1 Problem Formulation

5.1.1 Deterministic Baseline Problem.

To begin adding details to the notional scenario in Figure 5.1, a two-dimensional

grid of 50 x 50 nautical miles (NM) was chosen. Three threats with effective ring

diameters of approximately 20 NM were arbitrarily placed in the grid at (10 NM, 30

NM), (25 NM, 15 NM), and (35 NM, 30 NM). The target was chosen to be located at

(25 NM, 50 NM). Threat and target locations can be easily changed to accommodate

user-supplied scenario specifications. Likewise, the diameters of the threat rings can

be adjusted and are not constrained to be uniformly sized. Units of NM and knots

(kts) were used since they are familiar to aircrews and mission planners who have

interest in this type of problem.
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Figure 5.1. Notional sketch of the trajectory optimization problem

The vehicle dynamics are generically represented with the Dubins model in (5.1).

ẋ1(t) = V cos(θ(t))

ẋ2(t) = V sin(θ(t)) (5.1)

θ̇(t) = u(t)

This model was used to avoid adding the complexity of developing and coding a

model for a specific vehicle’s dynamics, which is not necessary to demonstrate the

hybrid algorithm’s performance. The state and control vectors are defined as x(t) =

[x1(t), x2(t), θ(t)]T ∈ R3 and u(t) = [θ̇(t)] ∈ R1, where x1 and x2 describe the

vehicle’s position in the two-dimensional grid space and θ is the heading angle. The

vehicle speed (V ) is assumed to be a constant 470 kts, chosen based on a mission
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profile of a generic large aircraft, and the control is bounded as:

|u(t)| ≤ V

Rmin

(5.2)

where the minimum turn radius (Rmin) based on the constant speed is estimated to

be 11,326 feet. The initial and terminal boundary conditions are:

x(t0) = x(−1) = [0, 0, 1.1071]T (5.3)

x(tf ) = x(1) = [25, 50, free]T

where tf is unspecified, or free. Lastly, admissible paths are restricted to lie within

the boundaries of the grid, stated in the form of (2.72) as:

[−x1(τ), (x1(τ)− 50), −x2(τ), (x2(τ)− 50)]T ≤ 0 (5.4)

These boundaries were chosen to restrict the vehicle’s allowable area of operations,

thereby creating a scenario where the vehicle must navigate through the threat field

rather than completely avoid it.

The most important element in setting up the TO problem is to appropriately

choose a cost functional in the form of (2.69) that leads to the trajectory that allows

the aircraft to reach the target while minimizing the vehicle’s exposure to lethal

threats and not prohibiting it from passing through higher threat areas of the space.

The integrand of the Lagrange term in (2.69) must be chosen to define the areas

of the space shown in Figure 5.1 that pose the greatest risk to the vehicle. In an

obstacle avoidance problem, the threat shapes would be treated as path constraints,

as investigated by Gong et al. [44] and Lewis et al. [59], making any trajectory that

passes through those areas of the space inadmissible. Numerical solvers would only

100



return solutions that totally avoid those areas of the space or output a message

stating that no optimal solution exists that satisfies these constraints. However,

in this case, the threats are treated as regions of the space that represent varying

probabilities that the vehicle will be killed, not as hard obstacles that should be totally

avoided. The threat rings represent likelihood, or probabilities, that traveling into

those areas would result in the vehicle being eliminated. Random elements, discussed

later in this section, are introduced through uncertainty of the exact center locations

of the threat rings, making it possible for the threat rings to overlap and impossible

to completely avoid the threats. Therefore, the integrand of the cost functional,

g(x(τ),u(τ), τ ; t0, tf), should be something that describes the probabilities of kill

(POK) in the space, assuming that the highest probabilities will be near the center of

the threat rings and decrease with distance away from the center. Minimizing such

a functional will allow the vehicle to pass through regions of the space occupied by

the threat rings while finding the least threatening path to the target. A bi-variate

Gaussian PDF for each threat was used to describe the high-threat regions of the two

dimensional space, written as:

gi(·) =
1

2πσi,x1
σi,x2

exp

(

−1

2

[

(x1(τ)− µi,x1
)2

σ2
i,x1

+
(x2(τ)− µi,x2

)2

σ2
i,x2

])

(5.5)

where the mean values, µi,x1
and µi,x2

, and the standard deviations, σi,x1
and σi,x2

,

define the center and variation in lethality of the ith threat in the x1 and x2 directions

for i = 1, . . . , 3. Figure 5.2 depicts the high POK regions using the previously stated

center locations and σi,x1
= σi,x2

= 5 NM to create rings with 20 NM effective

diameters.

One final consideration is necessary in defining the cost functional. Looking at

Figure 5.2, it is obvious that multiple trajectories may exist that have equal minimum

POK, meaning that a unique solution may not exist, resulting in GPOPS failure to
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return a solution. To minimize this possibility, the Mayer term in the cost functional

should be chosen to drive the software to return the minimum POK path with shortest

travel time to the target. Including the Mayer term in the cost functional gives:

J(·) = Wtf +
tf − t0

2

∫ 1

−1

3
∑

i=1

gi(x1(τ), x2(τ), τ ; t0, tf)dτ (5.6)

where the weighting factor, W, on tf is used to make sure the Mayer and Lagrange

terms are on the same order of magnitude to avoid having the minimum time require-

ment dominate the solution. For this problem, W = 10−5 was used.

Finally, the TO problem can be stated as: Minimize J (5.6) subject to the dy-

namics (5.1), control constraint (5.2), boundary conditions (5.3), and path constraints

(5.4). This is a continuous-time Bolza-type TO problem that is nonlinear in both the

cost functional and the state dynamics, with fixed final state and free final time,

and constrained boundary conditions and control input. The solution to the problem

described thus far will be referred to as the deterministic solution, i.e. the noise-free

solution, which was found using GPOPS and is shown in Figure 5.2. The mean solu-

tion of the stochastic variant discussed in the next section will be compared to this

solution and should closely match it since the uncertainties will be assumed to be

zero mean.

5.1.2 Stochastic Problem.

The stochastic problem is formulated in this section by modifying the deterministic

version in the previous section and then following the development in section 2.4.2.

Uncertainty is added to the deterministic problem by introducing three random input

parameters, A1 , A2 , and A3 , and making the following substitutions indicated by the
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(→) into the Lagrange term, (5.5), of the cost functional, (5.6).

µi,x1
→ µi,x1

+ Ai

µi,x2
→ µi,x2

+ Ai

The integrand of the modified cost functional becomes:

gi(·) =
1

2πσi,x1
σi,x2

exp

(

−1

2

[

(x1(τ)− (µi,x1
+ Ai))2

σ2
i,x1

+
(x2(τ)− (µi,x2

+ Ai))2

σ2
i,x2

])

(5.7)

resulting in the modified cost functional:

J(·) = Wtf +
tf − t0

2

∫ 1

−1

3
∑

i=1

gi(x1(τ), x2(τ), τ ;Ai , t0, tf)dτ (5.8)

where the Ai ’s are assumed to be independent RVs whose distributions will be dis-

cussed later in this section. The random inputs thus defined and written into (5.7)
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and (5.8) introduce uncertainties on center locations of the threats, transforming J ,

x, u, and tf into RVs whose solutions will have statistical properties.

As in Chapter IV, the cost functional is not written with an expectation operator

since quantification of the effects of uncertain parameters on J(x), x(t), u(t), and tf

solutions is sought and there is no way to control the uncertainties or minimize their

effects. So, the cost functional as expressed by (5.7) and (5.8) is used when solving

each of the Q sampled deterministic problems, and the set of solutions is used to

construct gPC approximations of the states, control, cost, and final time as functions

of the random inputs to assess the effects of those uncertainties. Additionally, the

dynamics (5.1), control bounds (5.2), boundary conditions (5.3), and path constraints

(5.4) remain the same with the addition of uncertainty.

Following the development in section 2.4.2, the following definitions are made to

identify the key details needed to apply the hybrid algorithm:

• State variables: x = (x1, x2, θ) ∈ R3 (J = n = 3)

• Stochastic input parameters (random variables): p = (A1 ,A2 ,A3 ) ∈ R3

(N = 3).

• Outputs or observables: z = (x1, x2, θ, u, tf , J) ∈ R6 (K = 6)

The PDFs of A1 , A2 , and A3 are denoted by ρ1(A1 ), ρ2(A2 ), and ρ3(A3 ), respec-

tively. The joint PDF is given by (2.106) as:

ρ(p) =
3
∏

i=1

ρi(pi) = ρ1(A1 )ρ2(A2 )ρ3(A3 ) (5.9)

In this work, four combinations of the PDFs of A1 , A2 , and A3 are considered as

shown in Table 5.1, noting that the notation for Gaussian (normal) distributions is

N (µ, σ), and for uniform distributions is U(a, b).
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Table 5.1. Combinations of PDFs ρ1(A1 ), ρ2(A2 ), and ρ3(A3 ) and resulting finite sample
space, Γ

Combination ρ1(A1 ) ρ2(A2 ) ρ3(A3 ) Γ

1 N (0, 0.5) N (0, 0.5) N (0, 0.5) [−2, 2]× [−2, 2]× [−2, 2]
2 U(−1, 1) U(−1, 1) U(−1, 1) [−1, 1]× [−1, 1]× [−1, 1]
3 N (0, 0.5) U(−1, 1) N (0, 0.5) [−2, 2]× [−1, 1]× [−2, 2]
4 U(−1, 1) N (0, 0.5) U(−1, 1) [−1, 1]× [−2, 2]× [−1, 1]

Hermite polynomial bases collocated at Gauss-Hermite quadrature points were

used for gPC expansions associated with Gaussian distributions and Legendre polyno-

mial bases collocated at Gauss-Legendre points were used for gPC expansions associ-

ated with uniform distributions as suggested in [87] and [88]. As discussed in Chapter

IV, the statistical version of the Hermite polynomials was used where Gauss-Hermite

quadrature points were scaled by
√
2σ2 and shifted by µ and the quadrature weights

scaled by (
√
π)−1. Additionally, the Gauss-Legendre quadrature weights were scaled

such that the weights in the set sum to one so that the Legendre polynomials ap-

propriately approximate uniform probability distributions. Recall there are q points

in each random dimension, which are calculated by finding the roots of either the

qth Hermite polynomial, Hq, or the qth Legendre polynomial, Lq, as dictated by the

assumed PDF of the uncertain parameter, and scaled accordingly. The number of

collocation points in the three random dimensions, q1, q2, and q3, was chosen to be

7 to provide a balance between computation time and accuracy of the solution when

compared to MCS, resulting in Q = 343 collocation nodes with the finite probability

domains shown in Figure 5.3 and listed in Table 5.1.

The one-dimensional polynomial spaces were chosen, as given in (2.108), to be

defined by the following Hermite (H) and Legendre (L) polynomial basis sets as

shown in Table 5.2 for the four cases considered. In Table 5.2, the subscripts on H

and L indicate the order of the polynomial basis elements. Thus, the 3-dimensional
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Figure 5.3. Collocation points: Tensor grid of 343 points (7 in each dimension) used as
random inputs A1 , A2 , and A3 .

polynomial space, defined using the tensor product in (2.110), is:

W Pc

N ≡ {φ1}7d1=0

⊗

{φ2}7d2=0

⊗

{φ3}7d3=0 (5.10)

Selecting the entire set of basis functions, Pc = 21 in (2.111), yields 512 total basis

elements, where each one-dimensional basis set is at most seventh order and the

highest order of the tensor product set is 21. The number of basis elements was chosen,

all of which are used in computations, to provide a balance between computational

burden and accuracy of the solution when compared to MCS.

This section has presented all of the details necessary to implement the hybrid

GPM-gPC algorithm steps described in Chapter III. The results of applying the

algorithm to the sample problem considered in this research are presented in the next

section.
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Table 5.2. One-Dimensional polynomial basis sets

Combination Polynomial Basis Set
φ1 φ2 φ3

1 {H0, . . . , H7} {H0, . . . , H7} {H0, . . . , H7}
2 {L0, . . . , L7} {L0, . . . , L7} {L0, . . . , L7}
3 {H0, . . . , H7} {L0, . . . , L7} {H0, . . . , H7}
4 {L0, . . . , L7} {H0, . . . , H7} {L0, . . . , L7}

5.2 Results

Results of applying the hybrid GPM-gPC algorithm to the TO concept demonstra-

tion problem are presented in this section. The expected value solutions and variances

are plotted for x1(τ), x2(τ), θ(τ), and u(τ) and tabulated for J and tf for each of the

configurations listed in Table 5.1. Covariances between the states x1(τ) and x2(τ),

x1(τ) and θ(τ), and x2(τ) and θ(τ), as well as between the states and control, x1(τ)

and u(τ), x2(τ) and u(τ), and θ(τ) and u(τ), are also shown. The expected value,

variance, and covariance results determined by the hybrid algorithm are compared to

the MCS results for verification. Lastly, the hybrid algorithm solution statistics are

used to estimate the probabilities that the vehicle will be killed during the course of

the mission. Since this is a free final time problem, expected values, variances, and

covariances are plotted versus the time vector τ . Stochastic computations evaluating

the hybrid algorithm output function (3.2), expansion coefficients (3.1), and statis-

tical quantities derived from the expansion coefficients are not possible in the time

domain since the time points in the Q sampled solutions are not the same due to the

GPOPS transformation from the τ domain to the time domain using (2.73). The τ

vectors, however, remain consistent throughout regardless of the differing terminal

times and allows for stochastic computations using a consistent time reference. In a

fixed final time problem, these stochastic computations can be performed using the

time domain.
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As in Chapter IV, the MCS was accomplished by generating random samples of

the stochastic variables, (A1 ,A2 ,A3 ), taken from either Gaussian or uniform distri-

butions as appropriate in accordance with the four cases specified in Table 5.1. Each

sample was subsequently inserted into the Lagrange term (5.7) of the stochastic cost

functional (5.8), creating a set of deterministic TO problems that were solved using

GPOPS. The ensemble of solutions was used to calculate the MCS estimations of

expected values (means), variances, and covariances. Convergence was checked after

every 500 samples and was achieved when the maximum change in expected values

of the state trajectories from the previous interval was below an arbitrarily chosen

tolerance of 1× 10−4. Expected value, variance, and covariance properties of the hy-

brid algorithm solutions are compared to the MCS results using the the PD equation

(4.11) introduced in Chapter IV and are presented in Table 5.3 discussed later in this

section.

Expected value, or mean, approximations indicate the most likely solution to the

TO problem. Figures 5.5 - 5.8 show the mean solutions of x1(τ), x2(τ), θ(τ), and

u(τ) for each of the four cases listed in Table 5.1. The three curves on each of

these plots show the hybrid algorithm expected value solutions, the MCS expected

value solutions, and the deterministic solution. The hybrid algorithm expected value

approximation for each state and control variable is given by the first coefficient

in each expansion as stated in (3.3). Bars indicating two standard deviations are

included to quantify how much the solution varies from the mean. The solution

to the deterministic TO problem defined by (5.1) - (5.6), or equivalently by (5.1) -

(5.4) and the stochastic cost functional (5.8) with Ai = 0, serves as another check

of the mean solution. Since the Gaussian stochastic inputs are unbiased and zero

mean and the uniform stochastic inputs are symmetric about zero, it was expected

that the hybrid algorithm mean solutions would be close to the deterministic ones as
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shown in the expected value figures. This check was possible by virtue of the problem

formulation and may not be available in more general problems. These plots show

that the hybrid algorithm and MCS expected value results closely match each other

as quantified with PD calculations using (4.11) and shown in Table 5.3. The PDs in

expected values of x1(τ), x2(τ), θ(τ), and u(τ) are generally on the order of 10−2 and

at most around one percent in the u(τ) approximation in cases #3 and #4. Both

the hybrid algorithm and the MCS solutions also match the deterministic solution as

expected, and the desired terminal conditions x1(tf ) and x2(tf) are satisfied.

Variance approximations to the stochastic problem indicate how much the solu-

tions to the TO problem could deviate from the most likely solutions depending on

the values that the uncertain parameters can assume. Figures 5.9 - 5.12 show the

variances of the hybrid algorithm solutions of x1(τ), x2(τ), θ(τ), and u(τ) for each

of the four cases listed in Table 5.1, calculated using (3.4). MCS results are again

included for comparison. These plots show close agreement between the hybrid al-

gorithm and MCS variance approximations of x1(τ), x2(τ), θ(τ), and u(τ) with PD

values, as shown in Table 5.3, ranging from 0.901% to 4.55% and predominantly in

the one to two percent range. Desired terminal conditions, x1(tf ) and x2(tf ) are also

satisfied as indicated by zero variances at the terminal time.

Covariance estimations further characterize the distributions of the stochastic

state and control solutions by providing indications of correlations between x1(τ)

and x2(τ), x1(τ) and θ(τ), x2(τ) and θ(τ), x1(τ) and u(τ), x2(τ) and u(τ), and θ(τ)

and u(τ). Figures 5.13 - 5.16 show these covariance estimates approximated by the

hybrid algorithm, calculated using (3.5), and compares them with MCS estimates

for each of the four cases listed in Table 5.1. The covariance plots show that the

state variables and control outputs are dependent even though the random inputs

are assumed to be independent, which is as expected since the state trajectories and

109



uncertain parameters are related through the nonlinear cost functional (5.8). As with

the expected value and variance estimates, these figures show agreement between the

hybrid algorithm and the MCS results, which are confirmed quantitatively in Table

5.3, where the PD values are between 0.7 and 4.6 percent. Note that the table also

shows two suspiciously high PD comparisons: 23.92% in the covariance between x1(τ)

and θ(τ) in case #1 (Table 5.3(a)) and 54.16% in the covariance between θ(τ) and

u(τ) in case #4 (Table 5.3(d)). However, these apparently large differences between

hybrid algorithm and MCS approximations are not evident in Figures 5.13(b) and

5.16(f). These exceptions are due to limitations of using (4.11) in cases where the

difference between the quantities being compared (numerator) is very small but the

values themselves are far enough apart such that the average (denominator) results

in an unexpectedly high PD, even though significant differences are not obvious on

the graphs. Therefore, it was concluded that these anomalies do not demonstrate ap-

preciable disagreement between the hybrid algorithm and MCS and are a limitation

of the PD metric.

Expected value and variance results for estimating the cost, J , and final time, tf ,

are given in Table 5.4 and Table 5.5, respectively. The hybrid algorithm and MCS

approximations for the expected values and variances in both variables closely match

each other as shown by the small PDs given in the tables and are actually equal, to

four decimal places, in expected value of the final time. Furthermore, the expected

values of both J and tf agree with the deterministic solution.

The expected value plots (Figures 5.5 - 5.8), along with the variance plots (Figures

5.9 - 5.12) and covariance plots (Figures 5.13 - 5.16) give the most likely solution

to the stochastic trajectory optimization problem and describe the nature of the

output distributions by quantifying the affects of the random parameters on the

output solutions. Combined with the information in Table 5.3, these results show
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that the hybrid algorithm provides solutions to the stochastic problems that are at

least equivalent to the widely-accepted MCS method while significantly reducing the

computational workload. Having a mix of probability distributions and thus a mix

of polynomial basis sets also does not appear to have any effect on the ability of the

hybrid algorithm to produce accurate solution approximations that correlate well with

MCS approximations. Notes included in Table 5.3 show that the hybrid algorithm

is able to produce equivalent approximations using seventh-order one-dimensional

polynomial bases and 343 sampled deterministic solutions requiring five to six minutes

of processing on an Apple MacBook Pro computer with a 2.2 gigahertz quad-core

processor and 8 gigabytes of memory, whereas the MCS required between 17.5K and

34K sampled deterministic solutions and up to 6.5 hours of processing.

The most valuable product to mission planners and aircrews is not the set of

statistics describing expected values, variances, and covariances and how well the

hybrid algorithm results compare with the MCS results, but rather an estimation of

the probability that they will suffer from lethal engagements with the threats while

executing the mission. The discussion that follows leads to an estimate of the POK

for the mission scenario by re-packaging the aforementioned results for case #1 where

the uncertainties related to the center locations of the three threats are assumed to

have zero mean Gaussian distributions with 0.5 NM standard deviations. The analysis

that follows could be repeated for the other three cases, but does not add significantly

new or noteworthy results and is thus omitted.

To do the evaluation, it was assumed no new information is available on the threat

locations. Therefore, the best guess at a mission plan is to fly the mean trajectory

shown in Figure 5.5, noting that if updated information were to become available,

the hybrid output approximation function (3.2) could be evaluated to provide the

crews with a new navigation solution with minimum POK. To assess minimum and
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maximum expected POKs, the analysis was conducted as if the threats have moved

in best and worst case scenarios while assuming the mean trajectory is followed. The

best case was modeled by assuming the threats have moved away from the mean

trajectory by the extreme values shown in Figure 5.3 by letting A1 = −2, A2 = 2,

and A3 = 2, resulting in the threat rings defined by the POK PDF, the integrand in

(5.8), shown in Figure 5.17(a), effectively reducing potential exposure to the threats

when compared to the nominal threat configuration. Conversely, the worst case was

modeled by assuming that the threats have moved closer to the mean trajectory by

the extreme values by letting A1 = 2, A2 = −2, and A3 = −2, resulting in the threat

rings shown in Figure 5.17(b), thus increasing the potential of fatal engagements.

With these choices, the POK PDFs given in (5.7) can be written for the best case as:

g1(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−8)2

25 + (x2(τ)−28)2

25

])

g2(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−27)2

25 + (x2(τ)−17)2

25

])

(5.11)

g3(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−37)2

25 + (x2(τ)−32)2

25

])

and for the worst case as:

g1(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−12)2

25 + (x2(τ)−32)2

25

])

g2(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−23)2

25 + (x2(τ)−13)2

25

])

(5.12)

g3(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−33)2

25 + (x2(τ)−27)2

25

])

recalling that the full POK PDF is given by:

g(x1(τ), x2(τ), τ) =
3
∑

i=1

gi(x1(τ), x2(τ), τ) (5.13)

The POK as a function of τ can be determined by integrating (5.13) over some
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region of the two-dimensional space surrounding the mean trajectory at each time

point. The region of the space was determined, based on the expected value trajectory

shown in Figure 5.5 and variance results shown in Figure 5.9, by selecting the upper

and lower bound trajectories, xub and xlb, as:

xub =
(

E [x1(τ)] + 10
√

var(x1(τ)),E [x2(τ)] + 10
√

var(x1(τ))
)

(5.14)

xlb =
(

E [x1(τ)]− 10
√

var(x1(τ)),E [x2(τ)]− 10
√

var(x1(τ))
)

This region is shown in Figure 5.17 and was arbitrarily chosen to provide conservative

POK estimates to aircrews and mission planners while allowing for some flexibility

in flight path. In this figure, notice that the trajectory windows are similar for the

best and worst case scenarios and very small early in the mission profile where there

is minimal threat to the vehicle necessitating little deviation from the minimum time

trajectory. Thus, the best and worst case paths remain close to the expected value.

As the vehicle moves into the center of the threat field, the threats pose greater risks

to the vehicle resulting in greater variance in the path that should be flown to mitigate

the risks. These observations are further evident in the POK calculation along the

path.

The POK as a function of τ was determined by constructing the Cumulative

Distribution Function (CDF) of the POK PDF given by:

G(τi) =

∫ xub
2,i

xlb
2,i

∫ xub
1,i

xlb
1,i

3
∑

i=1

gi(x1(τ), x2(τ), τ)dx1dx2 (5.15)

where the counting index, i, refers to the ith τ point and the limits of integration at
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each τi point are:

xlb
1,i = E [x1(τi)]− 10

√

var(x1(τi)) (5.16)

xub
1,i = E [x1(τi)] + 10

√

var(x1(τi))

xlb
2,i = E [x2(τi)]− 10

√

var(x2(τi))

xub
2,i = E [x2(τi)] + 10

√

var(x2(τi))

The results are shown in Figure 5.18. This figure shows that early in the mission, τ less

than -0.6, the POK is essentially zero, then increases to a maximum of approximately

0.5% as the vehicle approaches the closest threat, with both scenarios resulting in

similar threat levels. As the vehicle gets into the higher risk regions of the space,

τ greater than 0.2, the best case and worst case POK estimates diverge where the

best case shows a maximum POK of approximately 0.25% and the worst case peaks

at about 1%. This information provides aircrews with estimates of how vulnerable

they are to the threats at each point in time as they progress through the mission,

although they would also be interested in knowing an overall mission POK estimate.

The mission POK was found by integrating the POK CDF (5.15) over the time

domain for both best and worst cases, written as:

POKmission =

∫ 1

−1

G(τ)dτ (5.17)

The integration was performed by applying Gaussian quadrature to the data presented

in Figure 5.18 resulting in cumulative POK estimates shown in Figure 5.19. The

anticipated mission POKs are read from the figure at the end time and range from

0.25% to 0.5%. This information, combined with the information contained in Figure

5.18, tells planners and crews what their expected overall mission POK is along with

identifying the points during the mission where they are most vulnerable.
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Figure 5.4. Threat ring locations and hybrid algorithm mean solution to the modified
trajectory optimization problem used in POK analysis.

The POK evaluation was repeated for a more challenging threat layout to further

demonstrate the ability of the hybrid algorithm to produce POK estimates that are

meaningful to operators and planners. The locations of the threats were modified

to yield greater interactions than was shown in Figure 5.17. The modified scenario

was constructed by placing the threats at (10 NM, 27 NM), (24 NM, 23 NM), and

(25 NM, 38 NM) as shown in Figure 5.4. The hybrid algorithm was applied to this

scenario to estimate the expected value trajectory, also shown in Figure 5.4, and the

variance information needed in the POK analysis. Comparison with an MCS is not

presented but it’s interesting to note that the hybrid algorithm generated solutions

to this modified scenario in 26 minutes, whereas the MCS did not converge after 23

hours of processing generating an ensemble of 50K sample solutions.

To begin the POK analysis, the best case was once again modeled by assuming

the threats have moved away from the mean trajectory by letting A1 = −2, A2 = 2,

and A3 = 2, resulting in the threat rings shown in Figure 5.20(a). The worst case
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was also modeled as before by assuming that the threats have moved closer to the

mean trajectory by letting A1 = 2, A2 = −2, and A3 = −2, resulting in the threat

rings shown in Figure 5.20(b). The modified POK PDFs, given by (5.7) for the best

case are:

g1(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−8)2

25 + (x2(τ)−25)2

25

])

g2(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−26)2

25 + (x2(τ)−25)2

25

])

(5.18)

g3(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−27)2

25 + (x2(τ)−40)2

25

])

and for the worst case are:

g1(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−12)2

25 + (x2(τ)−29)2

25

])

g2(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−22)2

25 + (x2(τ)−21)2

25

])

(5.19)

g3(x1(τ), x2(τ), τ) =
1

50πexp
(

−1
2

[

(x1(τ)−23)2

25 + (x2(τ)−36)2

25

])

recalling that the full POK PDF is the sum of the three contributions given by (5.13).

The POK as a function of τ was determined by integrating (5.13) over the envelope

surrounding the mean trajectory defined by:

xub =
(

E [x1(τ)] + 4
√

var(x1(τ)),E [x2(τ)] + 4
√

var(x1(τ))
)

(5.20)

xlb =
(

E [x1(τ)]− 4
√

var(x1(τ)),E [x2(τ)]− 4
√

var(x1(τ))
)

This region is shown in Figure 5.20 and was arbitrarily chosen to provide conservative

POK estimates while allowing some flexibility in flight path. The results of the spatial

integration are shown in Figure 5.21. This figure shows that early in the mission

(τ < −0.6) the POK is essentially zero, increases to a maximum of approximately

8% in the best case and 13% in the worst case as the vehicle traverses the high threat
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region of the space (−0.6 < τ < 0.4), then becomes essentially zero again (τ > 0.4)

for the last part of the mission. This information provides aircrews with estimates of

how vulnerable they are at each point in time during the mission and can be used to

provide an overall mission POK estimate.

The mission POK estimate for the modified scenario was found by integrating the

POK CDF (5.15) over the time domain for both best and worst cases using Gaussian

quadrature applied to the data presented in Figure 5.21. The results are shown in

Figure 5.22, which displays the mission POK as a cumulative total at each time

point. The POK estimate covering the duration of the mission, which is read from

the figure at the final time point, ranges between 3.3% and 6.8%. The combination

of the information shown in Figures 5.21 and 5.22 tells mission planners and aircrews

their probability of being killed based on their position along the planned trajectory

and the total probability of being killed at each point in time.

5.3 Summary

The concept demonstration problem considered in this chapter was designed to be

representative of a real-world mission scenario that is of interest to USSTRATCOM.

It is a nonlinear TO problem designed to find the path through a two-dimensional

space that minimizes the probability a vehicle will be killed by lethal threats whose

locations are uncertain, to quantify the effects those uncertainties have on the solu-

tion by estimating the statistical properties, and to use the statistical properties to

estimate the probability of the vehicle being killed during the mission. Uncertainties

in the locations of the threats were modeled as either Gaussian or uniform random

variables that entered the problem in the the cost functional. Following the gPC

description in section 2.4.2, the problem was formulated in a form suitable for ap-

plication of the hybrid GPM-gPC algorithm presented in Chapter III. The output
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of the algorithm provided a set of polynomial approximation functions for the state

variables, x(τ ;A1,A2,A3), control, u(τ ;A1,A2,A3), cost, J(A1,A2,A3), and terminal

time, tf(A1,A2,A3), whose expected values, variances, and covariances, were found

using the expansion coefficients and describe the statistical properties of the solu-

tion. Comparing the statistical properties determined by application of the hybrid

algorithm with the MCS results demonstrated that the hybrid algorithm effectively

quantifies the effects of uncertainty with comparable accuracy while requiring dra-

matically fewer sample points and associated GPOPS deterministic solutions and

computation time. Probability of kill computations demonstrated that the hybrid

algorithm results can be used to assess risks associated with a trajectory solution in

a way that is meaningful to mission planners and aircrews.
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Figure 5.5. MCS, deterministic, and hybrid algorithm expected value estimates of
states, x1(τ), x2(τ), and θ(τ), and control, u(τ), for configuration #1.
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Figure 5.6. MCS, deterministic, and hybrid algorithm expected value estimates of
states, x1(τ), x2(τ), and θ(τ), and control, u(τ), for configuration #2.
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Figure 5.7. MCS, deterministic, and hybrid algorithm expected value estimates of
states, x1(τ), x2(τ), and θ(τ), and control, u(τ), for configuration #3.
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Figure 5.8. MCS, deterministic, and hybrid algorithm expected value estimates of
states, x1(τ), x2(τ), and θ(τ), and control, u(τ), for configuration #4.
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Figure 5.9. MCS and hybrid algorithm variance estimates of states, x1(τ), x2(τ), and
θ(τ), and control, u(τ), for configuration #1.
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Figure 5.10. MCS and hybrid algorithm variance estimates of states, x1(τ), x2(τ), and
θ(τ), and control, u(τ), for configuration #2.
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Figure 5.11. MCS and hybrid algorithm variance estimates of states, x1(τ), x2(τ), and
θ(τ), and control, u(τ), for configuration #3.
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Figure 5.12. MCS and hybrid algorithm variance estimates of states, x1(τ), x2(τ), and
θ(τ), and control, u(τ), for configuration #4.

123



−1 −0.5 0 0.5 1−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

 

 

MCS
Hybrid Alg

Time, τ

co
v
[x

1
(τ
),
x
2
(τ
)]
,
N
M

2

(a) Covariance of x1(τ) and x2(τ)

−1 −0.5 0 0.5 1−0.01

−0.005

0

0.005

0.01

0.015

 

 

MCS
Hybrid Alg

Time, τ

co
v
[x

1
(τ
),
θ(
τ)
],
N
M

2

(b) Covariance of x1(τ) and θ(τ)

−1 −0.5 0 0.5 1−0.01

−0.005

0

0.005

0.01

 

 

MCS
Hybrid Alg

Time, τ

co
v
[x

2
(τ
),
θ(
τ)
],
N
M

2

(c) Covariance of x2(τ) and θ(τ)

−1 −0.5 0 0.5 1−0.5

0

0.5

1

1.5

2

 

 

MCS
Hybrid Alg

Time, τco
v
[x

1
(τ
),
u
(τ
)]
,
N
M
-r
ad

/h
r

(d) Covariance of x1(τ) and u(τ)

−1 −0.5 0 0.5 1−1.5

−1

−0.5

0

0.5

 

 

MCS
Hybrid Alg

Time, τco
v
[x

2
(τ
),
u
(τ
)]
,
N
M
-r
ad

/h
r

(e) Covariance of x2(τ) and u(τ)

−1 −0.5 0 0.5 1−0.1

−0.05

0

0.05

0.1

0.15

 

 

MCS
Hybrid Alg

Time, τ

co
v
[θ
(τ
),
u
(τ
)]
,
N
M
-r
ad

/h
r
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Figure 5.13. MCS and hybrid algorithm covariance estimates between the states, x1(τ),
x2(τ), and θ(τ), and between the states and control, u(τ), for configuration #1.
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Figure 5.14. MCS and hybrid algorithm covariance estimates between the states, x1(τ),
x2(τ), and θ(τ), and between the states and control, u(τ), for configuration #2.
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Figure 5.15. MCS and hybrid algorithm covariance estimates between the states, x1(τ),
x2(τ), and θ(τ), and between the states and control, u(τ), for configuration #3.
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Figure 5.16. MCS and hybrid algorithm covariance estimates between the states, x1(τ),
x2(τ), and θ(τ), and between the states and control, u(τ), for configuration #4.
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(b) Worst case threat PDF configuration

Figure 5.17. Trajectory window with threat rings defined by POK PDF.
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Figure 5.18. POK estimates at each time point for best and worst case scenarios.
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Figure 5.19. Cumulative POK estimates for best and worst case scenarios.
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(a) Best case threat PDF configuration
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(b) Worst case threat PDF configuration

Figure 5.20. Trajectory window and threat rings defined by POK PDF in modified
scenario.
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Figure 5.21. POK estimates at each time point for best and worst case scenarios using
modified threat locations.
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Figure 5.22. Cumulative POK estimates for best and worst case scenarios using modi-
fied threat locations.
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Table 5.3. Difference between hybrid algorithm and MCS results

(a) Case #1

S Max Difference PD
(|SMCS − Salg|) (%)

Mean
x1(τ) 5.825E-3 0.0262
x2(τ) 1.950E-3 0.01027
θ(τ) 9.214E-4 0.09503
u(τ) 8.522E-2 0.2409

Variance
x1(τ) 1.403E-3 1.126
x2(τ) 6.815E-4 0.901
θ(τ) 4.798E-5 1.587
u(τ) 0.4126 1.719

Covariance
x1(τ), u(τ) 2.332E-2 2.528
x2(τ), u(τ) 1.702E-2 1.275
θ(τ), u(τ) 3.689E-3 2.554
x1(τ), x2(τ) 6.25E-4 0.7332
x1(τ), θ(τ) 1.638E-4 23.92
x2(τ), θ(τ) 1.149E-4 1.224

MCS: 30K samples, 387.1 minutes pro-
cessing
Hybrid algorithm: 6.5 minutes process-
ing

(b) Case #2

S Max Difference PD
(|SMCS − Salg|) (%)

Mean
x1(τ) 5.205E-3 0.02332
x2(τ) 1.217E-3 0.003761
θ(τ) 8.404E-4 0.07754
u(τ) 0.1004 0.4471

Variance
x1(τ) 2.002E-3 1.138
x2(τ) 1.228E-3 1.143
θ(τ) 5.992E-5 1.467
u(τ) 0.5126 1.563

Covariance
x1(τ), u(τ) 3.088E-2 1.481
x2(τ), u(τ) 2.496E-2 1.373
θ(τ), u(τ) 4.702E-3 3.908
x1(τ), x2(τ) 1.586E-3 1.287
x1(τ), θ(τ) 2.062E-4 1.437
x2(τ), θ(τ) 1.721E-4 1.343

MCS: 17.5K samples, 221.8 minutes pro-
cessing
Hybrid algorithm: 5.6 minutes processing

(c) Case #3

S Max Difference PD
(|SMCS − Salg|) (%)

Mean
x1(τ) 3.7E-3 0.04095
x2(τ) 2.374E-3 0.01718
θ(τ) 8.359E-4 0.07706
u(τ) 0.1379 1.09

Variance
x1(τ) 4.977E-3 4.002
x2(τ) 3.879E-3 4.153
θ(τ) 1.713E-4 4.772
u(τ) 1.293 4.55

Covariance
x1(τ), u(τ) 7.787E-2 4.238
x2(τ), u(τ) 6.936E-2 4.396
θ(τ), u(τ) 7.935E-3 4.614
x1(τ), x2(τ) 4.4E-3 4.092
x1(τ), θ(τ) 5.251E-4 4.193
x2(τ), θ(τ) 4.911E-4 4.415

MCS: 34K samples, 453.2 minutes pro-
cessing
Hybrid algorithm: 6.6 minutes process-
ing

(d) Case #4

S Max Difference PD
(|SMCS − Salg|) (%)

Mean
x1(τ) 6.796E-3 0.03057
x2(τ) 1.718E-3 0.00749
θ(τ) 1.185E-3 0.1093
u(τ) 0.1359 1.071

Variance
x1(τ) 1.691E-3 0.8180
x2(τ) 9.097E-4 1.207
θ(τ) 6.581E-5 2.021
u(τ) 0.5254 2.231

Covariance
x1(τ), u(τ) 2.985E-2 2.01
x2(τ), u(τ) 2.377E-2 1.822
θ(τ), u(τ) 4.704E-3 54.16
x1(τ), x2(τ) 1.214E-3 1.228
x1(τ), θ(τ) 2.018E-4 1.774
x2(τ), θ(τ) 1.354E-4 1.325

MCS: 17.5K samples, 234.6 minutes pro-
cessing
Hybrid algorithm: 5.1 minutes process-
ing
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Table 5.4. Hybrid algorithm and MCS expected value and variance of J

Case E[J ] E[J ] PD var(J) var(J) PD
Alg MCS (%) Alg MCS (%)

1 1.6156E-5 1.6160E-5 2.4756E-2 3.5976E-13 3.5961E-13 4.1703E-2

2 1.6136E-5 1.6155E-5 0.1177 4.8037E-13 4.9090E-13 2.1683
3 1.6148E-5 1.6144E-5 2.4774E-2 3.6575E-13 3.7227E-13 1.7669
4 1.6162E-5 1.6163E-5 6.1872E-3 4.7421E-13 4.7438E-13 3.5843E-2

Deterministic solution of J : 1.6164E-5

Table 5.5. Hybrid algorithm and MCS expected value and vari-
ance of tf

Case E[tf ] E[tf ] PD var(tf ) var(tf ) PD
Alg MCS (%) Alg MCS (%)

1 0.1231 0.1231 0 1.5542E-7 1.5493E-7 0.3158
2 0.1231 0.1231 0 2.0915E-7 2.0793E-7 0.5850
3 0.1231 0.1231 0 1.6921E-7 1.7553E-7 3.6665
4 0.1231 0.1231 0 1.8987E-7 1.9238E-7 1.3133

Deterministic solution of tf : 0.1230 hours
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VI. Conclusions and Recommendations

Ahybrid numerical algorithm was presented in this dissertation which combines

the GPM with the collocation form of the gPC method to quantify the effects

of stochastic parameters on OC and TO problem solutions. The GPM and gPC

have both been shown to be spectrally accurate numerical methods for solving deter-

ministic optimal control problems and stochastic differential equations, respectively.

The gPC method samples the random space using collocation nodes, which are then

inserted into the differential equations creating a set of deterministic differential equa-

tion problems that are solved using standard ODE and PDE solvers. The resulting

set of deterministic solutions are used in stochastic computations to characterize the

distribution of the solution by constructing a polynomial representation of the out-

put as a function of uncertain parameters. If OC and TO problems are considered in

the context of the HBVP formulation, an indirect transcription of the optimization

problem into a differential equation problem, and the GPM is thought of as a nu-

merical method that produces an approximate solution to the optimization problem

that is equivalent to an approximate pseudospectral solution to the HBVP, then it is

reasonable to theorize that a numerical GPM solver such as GPOPS could be used in

place of the deterministic differential equation solvers traditionally used in the gPC

algorithm. Thus, the hybrid algorithm considered in this document integrates the

GPOPS deterministic OC problem solver into the gPC construct thereby providing

a set of spectrally accurate numerical solutions to the sampled problems that satisfy

boundary, path, and bounded state and control constraints while minimizing the cost

functional and are suitable for stochastic computations, thus extending the current

and well-established gPC method of solving SDEs to be applicable to TO and OC

problems. The goal of the research presented in this document was to demonstrate

that the hybrid algorithm combining the GPM and gPC methods can effectively be

134



applied to quantify the effects of uncertainty in stochastic optimization problems.

6.1 Conclusions

The hybrid GPM-gPC algorithm was applied to two nonlinear concept demonstra-

tion problems to demonstrate the ability of the hybrid algorithm to solve nonlinear

optimization problems with uncertain parameters.

The first problem, an adaptation of a textbook problem, was an OC problem

with nonlinear dynamics and cost functional, fixed final state and time, and multi-

plicative Gaussian uncertainties effecting the state variable dynamics equations. The

solution to the problem was a set of polynomial functions approximating state vari-

ables, control, and cost solutions whose expected values, variances, and covariances,

were found using the expansion coefficients to describe the statistical properties of

the solution. Comparing the statistical properties determined by application of the

hybrid algorithm with the MCS results demonstrated close agreement between the

two methods. The error differences between the two methods did however bring into

question whether closer agreement would result if either the gPC parameters, number

of collocation points and order of polynomial approximation, or the MCS convergence

tolerance were adjusted. A second MCS with lower convergence tolerance was con-

ducted resulting in differences between the two methods decreasing by 28 to 67%,

leading to the conclusion that the hybrid algorithm was actually providing more ac-

curate approximations. The results presented show that the hybrid algorithm is able

to quantify the effects the Gaussian parameters on the optimal solution of a very

challenging nonlinear problem while requiring dramatically fewer sample points and

associated GPOPS deterministic solutions and computation time.

The second concept demonstration problem was designed to be representative of

a real-world mission scenario that has USSTRATCOM interest. The scenario was
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constructed to find the path through a two-dimensional space that minimizes the

POK by lethal threats whose locations are uncertain, to quantify the effects those

uncertainties have on the trajectory solution by estimating the statistical properties,

and to use the statistical properties to estimate the probability of the vehicle being

killed during the mission. It is a TO problem that is nonlinear in the state equa-

tions and cost functional, has fixed final state and free final time specifications, and

incorporates additive uncertainties that effect the cost functional. Four cases were

evaluated where the uncertainties in the threat locations were modeled as random

variables with either all Gaussian, all uniform, or a mix of the two distributions.

Similar to the first concept demonstration problem, the algorithm generated a set of

polynomial approximation functions for the state variables, control, cost, and termi-

nal time whose expected values, variances, and covariances, were calculated using the

expansion coefficients to describe the statistical properties of the solution. Compar-

ing the statistical properties determined by application of the hybrid algorithm with

the MCS results again demonstrated that the hybrid algorithm effectively quantifies

the effects of uncertainty with comparable accuracy to the MCS while requiring dra-

matically fewer sample points, GPOPS calls, and computation time. Additionally,

mixing probability distributions, and thus polynomial bases, did not seem to cause

any appreciable change in algorithm performance requiring modifications to numbers

of collocation points or polynomial order, or unfavorable comparison with the MCS

results. Probability of kill computations, which really was a repackaging of the hybrid

algorithm’s statistical data outputs, demonstrated that the results can be presented

in a form that can be used by mission planners and aircrews to asses risks associated

with a mission trajectory solution.

Considering that two types of nonlinear optimal control problems were investi-

gated with fixed boundary conditions in the first problem and a mix of fixed and free
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boundary conditions in the second, and with uncertainties effecting different equa-

tions in the problem formulations, it is apparent that inserting the GPM into the gPC

construct results in a new algorithm that is capable of solving a variety of nonlin-

ear optimal control problems with uncertain parameters. The results presented have

demonstrated that the method is able to generate solutions to the stochastic TO

and OC problems by determining the expected value solutions for the state variables,

control, cost, terminal time and characterize the probabilistic information about the

solutions that agrees with MCS results, thus characterizing how the optimal solu-

tion changes with uncertainty. Therefore, the hybrid GPM-gPC algorithm developed

herein extends gPC methods by providing a tool with great potential for uncertainty

quantification in optimal control and trajectory optimization problems.

6.2 Recommendations for Future Research

The concept demonstration problems considered in this work were designed to

be manageable within the confines of the limited processing capabilities that were

available. The results presented indicate that processing requirements in terms of

computation time and number of sample points required to solve the demonstration

problems was reasonable, but slight changes to these problems, such as adding addi-

tional state equations, increasing the number of random dimensions, or widening the

PDF windows of the uncertain parameters, causes dramatic increases in computa-

tional burden that quickly exceeds the capabilities of available resources. Therefore,

further investigation should first focus on improving computational efficiency of the

algorithm by determining guidelines for choosing the numbers of polynomial basis

elements combined with incorporation of sparse grids to reduce the number of collo-

cation points and GPOPS calls. Calling GPOPS 441 times in the first problem, and

343 times in the second, while using fifth- and seventh-order polynomial bases, respec-
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tively, was not overly time consuming, but keeping in mind that GPOPS uses an NLP

solver, which is an iterative routine in itself, to calculate state and control solutions

that meet optimality conditions, it’s obvious that as the number of states, controls,

and random inputs grow the computational burden will increase exponentially.

Once efficiency improvements have been considered, further research should be

conducted using a high-performance workstation with multiple processors and higher

memory capacity enabling expansion of the problem formulations. Although GPOPS

is not written for parallel processing, the hybrid algorithm code evaluating the ex-

pansion coefficients and output functions was able to take advantage of the avail-

able multi-core processor and parallel processing functionality in Matlab!to pro-

vide noticeable improvement in processing time. Further implementation on a multi-

processor computer is expected to provide even more improvements in processing

time and enable problem expansions. The first problem would be suitable for con-

sidering time-varying random parameters effecting the state equations. Further de-

veloping the algorithm to quantify the effects of time-varying uncertainties such as

wind gusts or sensor noise could eventually lead to applying the hybrid algorithm to

real- or near-real-time state estimation and control problems. The second problem

should be expanded by adding three additional random elements to more realistically

model potential threat movement in the two-dimensional space. This expansion was

attempted, but using the same seven points, seventh-order polynomial bases, and ten-

sor product spaces resulted in the number of collocation points increasing from 343 to

117,649 and the number of basis polynomials increasing from 512 to 262,144, which

was beyond the capabilities of available computers. On a more powerful computer,

additional threats could also be added as desired to represent other mission scenarios

USSTRATCOM may encounter.

With improved computational efficiency, high-performance computer resources,
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and algorithm enhancements to solve problems with time-varying random inputs, the

algorithm could then be applied to MAV research. MAV control problems are chal-

lenging because the small, lightweight aircraft are inherently nonlinear and vulnerable

to exogenous disturbances such as wind gusts and turbulence. Vehicle models are still

being developed through theoretical analysis and both wind tunnel and flight test-

ing since traditional aerodynamic theory does not adequately describe low Reynolds

number aerodynamics. Low-cost sensors used on these vehicles have more measure-

ment noise and errors than higher-fidelity sensors. Therefore, MAV problems are

stochastic in nature with model uncertainties, measurement noise, and time-varying

random disturbances. The hybrid algorithm may provide an effective tool to solve

nonlinear MAV optimization problems while including these stochastic elements.

Applying the hybrid GPM-gPC algorithm to other classes of nonlinear OC prob-

lems with uncertain parameters is also recommended as future research. Two types

of problems where the hybrid algorithm may be effective in quantifying the effects

of uncertain parameters on optimal solutions are bifurcation and chaotic problems.

Bifurcation occurs in a dynamical system when a “quantitative change of parameters”

leads to a “qualitative change in system properties” [76]. In the context of applying

the hybrid algorithm to stochastic OC problems, uncertain parameters effecting the

state equations may result in a qualitative change of system properties where solutions

to the set of deterministically sampled problems used in stochastic computations may

result in clustering around more than one apparent expected value. This clustering

would indicate discontinuity in the functional relationship between the approximate

solution and the uncertain parameters, suggesting that effective application of the

hybrid algorithm may require a method for determining the points in the finite prob-

ability space where bifurcation occurs and application of the hybrid algorithm over

each corresponding sub-domain.
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The second class of nonlinear OC problems involves applying the hybrid algorithm

to chaotic systems where uncertainty is included. Chaotic behavior is seen in strongly

nonlinear systems and is characterized by “output[s] that are extremely sensitive to

initial conditions” where very small changes in the initial conditions result in radically

different state trajectories [76]. Optimal control problems could be considered where

uncertainties are incorporated in initial conditions or in both initial conditions and

parameters effecting the dynamics equations to investigate the ability of the hybrid

algorithm to quantify the effects of the uncertainties on the solutions. A comparison

should be made between the output approximation function evaluated at several test

points drawn from the assumed probability distributions of the uncertain parameters

and deterministic solutions based on those test points to verify the accuracy of the

hybrid algorithm approximation. Additionally, since system responses are extremely

sensitive to small changes in initial conditions, a convergence analysis should be per-

formed to determine if exponential convergence is preserved since the approximate

solutions may not be smoothly dependent on the uncertain parameters. Investigating

applying the hybrid GPM-gPC algorithm to these two classes of nonlinear problems

in conjunction with the previously recommended research will further extend the

gPC method to be a useful tool in determining the effects uncertainties have on OC

problem solutions.

The work presented in this document is a first step in combining GPM and gPC

numerical methods to consider nonlinear optimal control problems effected by stochas-

tic elements. The results have demonstrated that the hybrid algorithm is capable of

quantifying the effects of uncertainties in problems that are meaningful to the USAF

and shows great potential for further applications to solve challenging control prob-

lems.
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Appendix A. Hybrid GPM-gPC Code

Selected lines of Matlab!code are given in this appendix to show how the steps

of the hybrid GPM-gPC algorithm presented in Chapter III were implemented

to solve the TO problem in Chapter V. Similar code was used to produce the results

presented for the OC problem in Chapter IV.

1.1 Collocation Nodes

Step #1: Calculate collocation nodes and quadrature weights {pj ,αj}Qj=1:

Listing A.1. Calculate collocation nodes and quadrature weights

% Define constants needed to set up the TO problem
constants.v=470; % Cruise speed in Kt
constants.ft2Nm =1/6076.11549; % Convert ft to nautical miles
constants.deg2rad=pi/180; % Convert degrees to radians
constants.Rmin =11326*constants.ft2Nm; % Assumed turn radius ...

converted to NM
% Properties of the 2-variate Gaussian PDF used to model threat ...

rings
constants.rho1 =0.0; constants.rho2 =0.0; constants.rho3 =0.0;
constants.sigt1x1=5; constants.sigt2x1=5; constants.sigt3x1=5;
constants.sigt1x2=5; constants.sigt2x2=5; constants.sigt3x2=5;
% Center locations of threats
constants.c1x1=10; constants.c1x2=30;
constants.c2x1=25; constants.c2x2=15;
constants.c3x1=35; constants.c3x2=30;

N=3; % Specify number of random dimensions (random parameters)
q=7; % Specify number of collocation points in each random ...

dimension
Q=q^N; % Total number of collocation points
d1=7; d2=7; d3=7; P=21; % 1-D polynomial order (d_i) and N-D ...

polynomial overall order (P)
mu=0; dev=0.5; % Define properties of Gaussian distributions

% For Gaussian distributions
[a,wa]=hermquadpts(q1); % hermquadpts function from Mathworks ...

website
[b,wb]=hermquadpts(q2);
[c,wc]=hermquadpts(q3);

a=a.*sqrt(2*dev^2)+mu; % scale points
b=b.*sqrt(2*dev^2)+mu;
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c=c.*sqrt(2*dev^2)+mu;

wa=wa./sqrt(pi); % scale quadrature weights
wb=wb./sqrt(pi);
wc=wc./sqrt(pi);

% For uniform distributions
[a,wa]=legquadpts(q1); % legquadpts function from Mathworks ...

website
[b,wb]=legquadpts(q2);
[c,wc]=legquadpts(q3);

lb=-1; % lower bound of uniform distribution
ub=1; % upper bound of uniform distribution

a=((a./2) +(1/2)).*(ub-lb)+lb; % scale points
b=((b./2) +(1/2)).*(ub-lb)+lb;
c=((c./2) +(1/2)).*(ub-lb)+lb;

wa=wa./sum(wa); % scale weights
wb=wb./sum(wb);
wc=wc./sum(wc);

% Construct tensor product point and weight sets
count =1;
for ii=1:q1

for jj=1:q2
for kk=1:q3
qc(count ,:)=[a(ii),b(jj),c(kk)]; % array of Q points
wtc(count ,:)=[wa(ii),wb(jj),wc(kk)];
wcprod(count)=wa(ii)*wb(jj)*wc(kk); % array of Q weights
count=count+1;
end

end
end

1.2 Apply GPOPS to Deterministic Sample Problems

Step #2: Using each of the Q collocation points pj , solve the set of deterministic

OC problems using GPOPS:

Listing A.2. Solve Q deterministic problems using GPOPS

for ii=1:Q
% Seperate samples for each dynamics equation

ac=qc(ii ,1);
bc=qc(ii ,2);
cc=qc(ii ,3);

143



% Call the main GPOPS script
MyProblemMain;
% Save state trajectory data
x1data =[x1data;x1out ’];
x2data =[x2data;x2out ’];
x3data =[x3data;x3out ’];
% Save control data
udata =[udata;uout ’];
% Save cost data
cost=[cost;costout];
% Save time data
tdata =[tdata;tout ’];

end

1.3 Expansion Coefficients

Step #3: Evaluate the expansion coefficients using (3.1):

ẑm =
Q
∑

j=1

z(pj)Φ
c
m(pj)αj; (m = 1, ...,M)

Listing A.3. Evaluate expansion coefficients

% Build the Hermite polynomial (H) or Legendre polynomial (P) ...
basis functions and evaluate at all combinations of a, b, and c

% Calculate polynomial normaliztion factors from Xiu ’s book [86]
% For Gaussian distributions
for ii=0:d1

int1(ii+1)=factorial(ii);
end

for ii=0:d2
int2(ii+1)=factorial(ii);

end

for ii=0:d3
int3(ii+1)=factorial(ii);

end

% For uniform distributions
for ii=0:d1

int1(ii+1)=1/(2* ii+1);
end

for ii=0:d2
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int2(ii+1)=1/(2* ii+1);
end

for ii=0:d3
int3(ii+1)=1/(2* ii+1);

end

% Build polynomial bases
% For Gaussian distributions...use Hermite polynomial basis ...

functions (hermite function from Mathworks website)
for ii=1:Q

m=1;
for jj=0:d1

for kk=0:d2
for ll=0:d3
h1(ii ,m)=(1/((2)^(jj/2)))*hermite(jj ,(qc(ii ,1)-mu)/(...

sqrt(2*dev^2)))/sqrt(int1(jj+1));
h2(ii ,m)=(1/((2)^(kk/2)))*hermite(kk ,(qc(ii ,2)-mu)/(...

sqrt(2*dev^2)))/sqrt(int2(kk+1));
h3(ii ,m)=(1/((2)^(ll/2)))*hermite(ll ,(qc(ii ,3)-mu)/(...

sqrt(2*dev^2)))/sqrt(int3(ll+1));

if jj+kk+ll <=P
Phi(ii,m)=h1(ii ,m)*h2(ii ,m)*h3(ii,m);
m=m+1;

end
end

end
end

end

% For uniform distributions...use Legendre polynomial basis ...
functions (LegendrePoly function from Mathworks website)

for ii=1:Q
m=1;
for jj=0:d1

for kk=0:d2
for ll=0:d3
h1(ii ,m)=polyval(LegendrePoly(jj) ,2*((qc(ii ,1)-lb)/(ub...

-lb)) -1)/sqrt(int1(jj+1));
h2(ii ,m)=polyval(LegendrePoly(kk) ,2*((qc(ii ,2)-lb)/(ub...

-lb)) -1)/sqrt(int2(kk+1));
h3(ii ,m)=polyval(LegendrePoly(ll) ,2*((qc(ii ,3)-lb)/(ub...

-lb)) -1)/sqrt(int3(ll+1));

if jj+kk+ll <=P
Phi(ii,m)=h1(ii ,m)*h2(ii ,m)*h3(ii,m);
m=m+1;

end
end

end
end
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end

[rphi cphi]=size(Phi);
M=cphi;

% Calculate expansion coefficients
for ii=1:M

parfor jj=1:Q % Parallel processing speeds up evaluation of ...
expansion coefficients
tt=Phi(jj ,ii)*wcprod(jj);

zj(jj)=cost(jj)*tt;
zt(jj)=tdata(jj,Nnodes +2)*tt;

z1(jj ,:)=x1data(jj ,:).*tt;
z2(jj ,:)=x2data(jj ,:).*tt;
z3(jj ,:)=x3data(jj ,:).*tt;
zu(jj ,:)=udata(jj ,:).*tt;
end

% Expansion coefficients for states x_1 , x_2 , and x_3
zhat1(ii ,:)=sum(w1);
zhat2(ii ,:)=sum(w2);
zhat3(ii ,:)=sum(w3);
% Expansion coefficients for control u
zhatu(ii ,:)=sum(wu);
% Expansion coefficients for cost J
zhatj(ii ,:)=sum(wj);
% Expansion coefficients for terminal time t_f
zhatt(ii ,:)=sum(wt);

end

1.4 Output Approximation Function

Step #4: Build the output approximation function using (3.2):

P
Pc

N z ≡ zPc

N (p) =
M
∑

m=1

ẑmΦ
c
m(p)

Listing A.4. Build output approximation function

% Construct polynomials and evaluate points of interest a_out , ...
b_out , and c_out

% For Gaussian distributions...use Hermite polynomial basis ...
functions (hermite function from Mathworks website)
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m=1;
for jj=0:d1

for kk=0:d2
for ll=0:d3

h11(m)=(1/((2)^(jj/2)))*hermite(jj ,(aout -mu)/sqrt(2*dev...
^2))/sqrt(int1(jj+1));

h22(m)=(1/((2)^(kk/2)))*hermite(kk ,(bout -mu)/sqrt(2*dev...
^2))/sqrt(int2(kk+1));

h33(m)=(1/((2)^(ll/2)))*hermite(ll ,(cout -mu)/sqrt(2*dev...
^2))/sqrt(int3(ll+1));

if jj+kk+ll <=P
Phiout(m)=h11(m)*h22(m)*h33(m);
m=m+1;

end
end

end
end

% For uniform distributions...use Legendre polynomial basis ...
functions (LegendrePoly function from Mathworks website)

m=1;
for jj=0:d1

for kk=0:d2
for ll=0:d3

h11(m)=polyval( LegendrePoly(jj),aout)/sqrt(int1(jj+1));
h22(m)=polyval( LegendrePoly(kk),bout)/sqrt(int2(kk+1));
h33(m)=polyval( LegendrePoly(ll),cout)/sqrt(int3(ll+1));

if jj+kk+ll <=P
Phiout(m)=h11(m)*h22(m)*h33(m);
m=m+1;

end
end

end
end

parfor ii=1:M % Parallel processing speeds up evaluation of output...
approximation

z1(ii ,:)=zhat1(ii ,:).* Phiout(ii);
z2(ii ,:)=zhat2(ii ,:).* Phiout(ii);
z3(ii ,:)=zhat3(ii ,:).* Phiout(ii);
zu(ii ,:)=zhatu(ii ,:).* Phiout(ii);
zj(ii)=zhatj(ii)*Phiout(ii);

zt(ii)=zhatt(ii)*Phiout(ii);
end

% Output approximation of states x_1 , x_2 , and x_3
zout1=sum(z1);
zout2=sum(z2);
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zout3=sum(z3);
% Output approximation of control u
zoutu=sum(zu);
% Output approximation of cost J
zoutj=sum(zj);
% Output approximation of terminal time t_f
zoutt=sum(zt);

1.5 Statistics of the Solution

Step #5: Evaluate the statistics of the approximate solution:

• Expected value (3.3):

E(z(t)) ≈ E(zPN(t)) =

∫

[

M
∑

m=1

ẑm(t)Φm(p)

]

ρ(p)dp = ẑ1(t)

• Variance (3.4):

var [z(t)] ≈
M
∑

m=2

[

ẑ2m(t)
]

• Covariance (3.5):

cov [zi(t), zj(t)] ≈
M
∑

m=2

[ẑi,m(t)ẑj,m(t)]

Listing A.5. Evaluate statistics

% Expected values of hybrid algorithm solution
% Expected value of states x_1 , x_2 , and x_3
MeanX1gPC=zhat1 (1,:);
MeanX2gPC=zhat2 (1,:);
MeanX3gPC=zhat3 (1,:);
% Expected value of control u
MeanUgPC=zhatu(1,:);
% Expected value of cost J
MeanJgPC=zhatj (1);
% Expected value of terminal time t_f
MeantfgPC=zhatt (1);

% Expected values of MCS solution

148



% Expected value of states x_1 , x_2 , and x_3
MeanX1MC=mean(x1MC);
MeanX2MC=mean(x2MC);
MeanX3MC=mean(x3MC);
% Expected value of control u
MeanUMC=mean(uMC);
% Expected value of cost J
MeanJMC=mean(costMC);
% Expected value of terminal time t_f
Meantf=mean(tMC(:,end));

% Variances of hybrid algorithm solution
% Variances of state estimates x_1 , x_2 , and x_3
VarX1gPC=sum(zhat1 (2:end ,:).^2);
VarX2gPC=sum(zhat2 (2:end ,:).^2);
VarX3gPC=sum(zhat3 (2:end ,:).^2);
% Variances of control estimate u
VarUgPC=sum(zhatu (2:end ,:).^2);
% Variances of cost estimate J
VarJgPC=sum(zhatj (2:end).^2);
% Variances of terminal time estimate t_f
VartfgPC=sum(zhatt (2:end).^2);

% Variances of MCS solution
% Variances of state estimates x_1 , x_2 , and x_3
VarX1MC=var(x1MC);
VarX2MC=var(x2MC);
VarX3MC=var(x3MC);
% Variances of control estimate u
VarUMC=var(uMC);
% Variances of cost estimate J
VarJMC=var(costMC);
% Variances of terminal time estimate t_f
VartfMC=var(tMC(:,end));

% Covariance of hybrid algorithm solution
% Covariances between state estimates x_1 , x_2 , and x_3
CovX1X2gPC=sum(what1 (2:end ,:).*what2(2:end ,:));
CovX1X3gPC=sum(what1 (2:end ,:).*what3(2:end ,:));
CovX2X3gPC=sum(what2 (2:end ,:).*what3(2:end ,:));
% Covariances between state estimates x_1 , x_2 , and x_3 and ...

control estimate u
CovX1UgPC=sum(what1(2:end ,:).*whatu (2:end ,:));
CovX2UgPC=sum(what2(2:end ,:).*whatu (2:end ,:));
CovX3UgPC=sum(what3(2:end ,:).*whatu (2:end ,:));

% Covariances of MCS solution
for ii=1:QMC

for jj=1:numtime
c1(ii,jj)=x1MC(ii ,jj)-MeanX1MC(jj);
c2(ii,jj)=x2MC(ii ,jj)-MeanX2MC(jj);
c3(ii,jj)=x3MC(ii ,jj)-MeanX3MC(jj);
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c4(ii,jj)=uMC(ii ,jj)-MeanUMC(jj);
end

end

% Covariances between state estimates x_1 , x_2 , and x_3
CovX1X2MC=mean(c1.*c2);
CovX1X3MC=mean(c1.*c3);
CovX2X3MC=mean(c2.*c3);
% Covariances between state estimates x_1 , x_2 , and x_3 and ...

control estimate u
CovX1UMC=mean(c1.*c4);
CovX2UMC=mean(c2.*c4);
CovX3UMC=mean(c3.*c4);

The code in this appendix forms the basis for a main Matlab!script that was

used that calls GPOPS (Appendix B) and MCS (Appendix C) routines where indi-

cated.
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Appendix B. GPOPS Set-Up Code

The GPOPS set-up files used to produce results presented in Chapter V are

shown in this appendix. This representative code shows the GPOPS configu-

ration used to produce solutions at the collocation points (hybrid algorithm) and at

the randomly sampled points (MCS). See [72] for detailed descriptions about these

files.

2.1 GPOPS Main Script: MyProblemMain.m

Listing B.1. GPOPS main script

clc
clear setup limits guess

global qc ac bc cc Nnodes constants t PK xinit xfinal

x10 = 0;
x1f = 25;

x20 = xinit (2);
x2f = xfinal (2);

x30 = atan(x2f/x1f);
x3f = [];

x1min = 0;
x1max = 50;

x2min = x1min;
x2max = x1max;

[xgrid ,ygrid ,PK]= killrings(constants ,ac,bc,cc ,x1min ,x1max ,x2min ,...
x2max);

constants.tmin=0;
constants.tmax=1;

x3min = -2*pi;
x3max = 2*pi;

tinit =0;
tfinal =[];
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param_min = [];
param_max = [];
path_min = [];
path_max = [];

event_min = [x10; x20; x30; x1f; x2f];
event_max = [x10; x20; x30; x1f; x2f];

duration_min = constants.tmin;
duration_max = constants.tmax;

iphase = 1;
limits(iphase).nodes = Nnodes; %60;
limits(iphase).time.min = [0 constants.tmin];
limits(iphase).time.max = [0 constants.tmax];
limits(iphase).state.min(1,:) = [x1min x1min x1min];
limits(iphase).state.max(1,:) = [x1max x1max x1max];
limits(iphase).state.min(2,:) = [x2min x2min x2min];
limits(iphase).state.max(2,:) = [x2max x2max x2max];
limits(iphase).state.min(3,:) = [x3min x3min x3min];
limits(iphase).state.max(3,:) = [x3max x3max x3max];

limits(iphase).control.min = -470/(11326/6076.11549);
limits(iphase).control.max = 470/(113266076.11549);

limits(iphase).parameter.min = param_min;
limits(iphase).parameter.max = param_max;

limits(iphase).path.min = path_min;
limits(iphase).path.max = path_max;

limits(iphase).event.min = event_min;
limits(iphase).event.max = event_max;

limits(iphase).duration.min = [];
limits(iphase).duration.max = [];

guess(iphase).time = [0; 0];

guess(iphase).state(:,1) = [x10; x1f];
guess(iphase).state(:,2) = [x20; x2f];
guess(iphase).state(:,3) = [x30; x3f];

guess(iphase).control = [0; 0];
guess(iphase).parameter = [];

clear x10 x20 x30 x1f x2f x3f x1min x1max x2min x2max x3min x3max
clear param_min param_max path_min path_max event_min event_max
clear duration_min duration_max iphase

setup.name = ’My -Problem’;
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setup.funcs.cost = ’MyProblemCost’;
setup.funcs.dae = ’MyProblemDae’;
setup.funcs.event = ’MyProblemEvent’;
setup.limits = limits;
setup.guess = guess;
setup.linkages = [];
setup.derivatives = ’automatic’;
setup.direction = ’decreasing’; %increasing
setup.autoscale = ’on’;

output = gpops(setup);
solution = output.solution;

x1out=solution.state(:,1);
x2out=solution.state(:,2);
x3out=solution.state(:,3);
p1out=solution.costate(:,1);
p2out=solution.costate(:,2);
p3out=solution.costate(:,3);
uout=solution.control;
tout=solution.time;
Hamout=solution.Hamiltonian;
costout=solution.Mayer_cost+solution.Lagrange_cost;

% ------------------------------------
% END: script MyProblemMain.m
% ------------------------------------

2.2 GPOPS Cost Function: MyProblemCost.m

Listing B.2. GPOPS cost function

% ------------------------------------
% BEGIN: function MyProblemCost.m
% ------------------------------------
function [Mayer ,Lagrange ,DMayer ,DLagrange]= MyProblemCost(sol)
global constants ac bc cc PK t Jscl

t0 = sol.initial.time;
x0 = sol.initial.state;
tf = sol.terminal.time;
xf = sol.terminal.state;
t = sol.time;
x = sol.state;
u = sol.control;
p = sol.parameter;

Mayer = 0.00001*tf;

% Sampled values (collocation or random) are passed into this ...
funciton as ac, bc , cc
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c1x=constants.c1x1+ac; c1y=constants.c1x2+ac;
c2x=constants.c2x1+bc; c2y=constants.c2x2+bc;
c3x=constants.c3x1+cc; c3y=constants.c3x2+cc;

% Threat #1
f11=(1/(2*pi*constants.sigt1x1*constants.sigt1x2*sqrt(1- constants....

rho1^2)));
f12=1/(2*(1- constants.rho1^2));
t11=(x(:,1)-c1x).^2./( constants.sigt1x1^2);
t12=(x(:,2)-c1y).^2./( constants.sigt1x2^2);
t13=(2* constants.rho1*(x(:,1)-c1x).*(x(:,2)-c1y))./( constants....

sigt1x1*constants.sigt1x2);

PK1=f11.*exp(-f12.*(t11+t12 -t13));

% Threat #2
f21=(1/(2*pi*constants.sigt2x1*constants.sigt2x2*sqrt(1- constants....

rho2^2)));
f22=1/(2*(1- constants.rho2^2));
t21=(x(:,1)-c2x).^2./( constants.sigt2x1^2);
t22=(x(:,2)-c2y).^2./( constants.sigt2x2^2);
t23=(2* constants.rho2*(x(:,1)-c2x).*(x(:,2)-c2y))./( constants....

sigt2x1*constants.sigt2x2);

PK2=f21.*exp(-f22.*(t21+t22 -t23));

% Threat #3
f31=(1/(2*pi*constants.sigt3x1*constants.sigt3x2*sqrt(1- constants....

rho3^2)));
f32=1/(2*(1- constants.rho3^2));
t31=(x(:,1)-c3x).^2./( constants.sigt3x1^2);
t32=(x(:,2)-c3y).^2./( constants.sigt3x2^2);
t33=(2* constants.rho3*(x(:,1)-c3x).*(x(:,2)-c3y))./( constants....

sigt3x1*constants.sigt3x2);

PK3=f31.*exp(-f32.*(t31+t32 -t33));

Lagrange = (PK1+PK2+PK3)/Jscl;

% ------------------------------------
% END: function MyProblemCost.m
% ------------------------------------

2.3 GPOPS Differential Algebraic Equations Function: MyProblemDAE.m

Listing B.3. GPOPS DAE function

% ------------------------------------
% BEGIN: function MyProblemDae.m
% ------------------------------------
function dae = MyProblemDae(sol);
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global ac bc constants

t = sol.time;
x = sol.state;
u = sol.control;

x1dot = constants.v.*cos(x(:,3));
x2dot = constants.v.*sin(x(:,3));
x3dot = u;

path = [];
dae = [x1dot x2dot x3dot path];

% ------------------------------------
% END: function MyProblemDae.m
% ------------------------------------

2.4 GPOPS Event Function: MyProblemEvent.m

Listing B.4. GPOPS Event Function

% ------------------------------------
% BEGIN: function MyProblemEvent.m
% ------------------------------------
function event = MyProblemEvent(sol);
global constants

t0 = sol.initial.time;
x0 = sol.initial.state;
tf = sol.terminal.time;
xf = sol.terminal.state;

event = [x0(1,:); x0(2,:); x0(3,:); xf(1,:); xf(2,:)];

% ------------------------------------
% END: function MyProblemEvent.m
% ------------------------------------
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Appendix C. Monte-Carlo Simulation Code

Selected lines of Matlab!code are given in this appendix to show how the MCS

results were generated for comparison with the hybrid GPM-gPC results in

Chapter V. A similar version was used to generate the MCS results presented in

Chapter IV.

Listing C.1. MCS code

% Initialize variables for data storage
% States x_1 , x_2 , and x_3
x1MC=[]; x2MC=[]; x3MC =[];
% Control u
uMC=[];
% Cost J
costMC =[];
% Time
tMC=[];
% Point counter for plotting
ptcount=[];

% Initialize variables for convergence checks
meanOldX1=zeros(1,Nnodes +2); meanOldX2=zeros(1, Nnodes +2); ...

meanOldX3=ones(1,Nnodes +2);

convStop=0;
chkPt =500;
numPts= 100000;

% Generate arrays of random samples for a, b, c
randsampG=randn(numPts ,3); % Gaussian
randsampU=rand(numPts ,3); % Uniform

% Initialize counter
ii = 1;

while convStop==0 && ii <=numPts

% For Gaussian distributions...scale points into specified...
distribution

ac=mu+dev*randsampG(ii ,1);
bc=mu+dev*randsampG(ii ,2);
cc=mu+dev*randsampG(ii ,3);

% For uniform distributions...scale points into specified ...
domain [lb ,ub]
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ac=(lb)+(((ub)-(lb))*randsampU(ii ,1));
bc=(lb)+(((ub)-(lb))*randsampU(ii ,2));
cc=(lb)+(((ub)-(lb))*randsampU(ii ,3));

% Call GPOPS main script
MyProblemMain;

% Save GPOPS outputs
% States x_1 , x_2 , and x_3
x1MC=[x1MC;x1out ’];
x2MC=[x2MC;x2out ’];
x3MC=[x3MC;x3out ’];

% Control u
uMC=[uMC;uout ’];

% Time
tMC=[tMC;tout ’];

% Cost J
costMC =[costMC;costout];

% Point counter
ptcount=[ ptcount;ii];

% Check convergence
if mod(ii ,500) ==0

convChkX1=(abs(meanOldX1 -mean(x1MC)));
convChkX2=(abs(meanOldX2 -mean(x2MC)));
convChkX3=(abs(meanOldX3 -mean(x3MC)));

if max( convChkX1) <=0.0001 && max( convChkX2) <=0.0001 &&...
max(convChkX3) <=0.0001 && ii <numPts
convStop=1;

end

% Save data for next convergence check
meanOldX1=mean(x1MC);
meanOldX2=mean(x2MC);
meanOldX3=mean(x3MC);

end

ii=ii+1;
end

% Save data to .mat files
% States x_1 , x_2 , and x_3
save x1MC x1MC
save x2MC x2MC
save x3MC x3MC
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% Control u
save uMC uMC

% Cost J
save costMC costMC

% Time
save tMC tMC

save ptcount ptcount
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with multiplicative uncertain elements and a mission planning problem sponsored by USSTRATCOM. The mission
planning scenario was constructed to find the path that minimizes the probability of being killed by lethal threats whose
locations are uncertain to statistically quantify the effects those uncertainties have on the flight path solution, and to use
the statistical properties to estimate the probability that the vehicle will be killed during mission execution. The results
demonstrated that the method is able to effectively characterize how the optimal solution changes with uncertainty and
that the results can be presented in a form that can be used by mission planners and aircrews to assess risks associated
with a mission profile.
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